整角問題

hkd585 自動ジャッジ 難易度: 数学 > 高校数学
2022年10月1日21:20 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ数: 0

問題文

三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

解答形式

解答のみを,半角数字で答えてください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Sign in with Google Discordでログイン パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

接線の交点

hkd585 自動ジャッジ 難易度:
11月前

3

問題文

$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる.
$\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている.
$AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている.
$a+b+c$の値を求めよ.

解答形式

半角数字で解答してください.

整数問題7/19

miq 自動ジャッジ 難易度:
2月前

1

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

17月前

1

問題文

数列{a_n}を,
a_1=log2 , a_(n+1)=(na_n+log(2n+1)+log2)/(n+1)
によって定める。
このとき, この数列の一般項 a_n および 極限値 lim(n→∞) (a_n-logn) をそれぞれ求めよ。

記述解答(大雑把で良い)でお願いします。

整角問題2

hkd585 自動ジャッジ 難易度:
11月前

20

問題文

凸四角形$ABCD$の対角線$AC$上に点$E$があり,$\angle BAC=30^\circ$,$\angle ABE=110^\circ$,$\angle CBE=20^\circ$,$\angle DAC=10^\circ$,$\angle ADE=10^\circ$がそれぞれ成り立っている.このとき,$\angle CDE$の大きさを度数法で表すと,$x^\circ$となる.

$x$に当てはまる数を求めよ.

※3通りの解法を用意しています.難しくはないので,いろんな方向からアプローチしてみてください.

解答形式

解答のみを,半角数字で答えてください.

無限級数1

Ghaaj 自動ジャッジ 難易度:
6月前

1

問題文

級数
$$1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-\frac{1}{5}-\frac{1}{6}-\frac{1}{7}-\frac{1}{8}+\frac{1}{9}+\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}-\frac{1}{15}-\frac{1}{16}+\cdots$$
の収束値を求めよ. ただし, この級数の第 $n$ 項の絶対値は $\dfrac{1}{n}$ であり, 各項の符号は $4$ 項ごとに交代する.

解答形式

収束値は $\fbox{A}\text{ - }\fbox{F}$ をいずれも自然数として最も簡単な形で $\displaystyle{\frac{\fbox{A}+\fbox{B}\sqrt{\fbox{C}}}{\fbox{D}}\pi+\frac{\log{\fbox{E}}}{\fbox{F}}}$
と 表されます. 文字列 $\fbox{A}\,\fbox{B}\,\fbox{C}\,\fbox{D}\,\fbox{E}\,\fbox{F}$ を解答してください.


問題文

$\angle B$ が鋭角である三角形 $ABC$ がある.いま,$\angle A$ の二等分線と辺 $BC$ との交点を $D$ とし,$D$ から辺 $AB$ に下ろした垂線の足を $H$ とする.$AH = 1944, HB = 2, AC = 2023$ がそれぞれ成り立つとき,辺 $BC$ の長さを求めよ.

解答形式

半角数字で解答してください.

4次関数の性質

zyogamaya 自動ジャッジ 難易度:
2年前

1

問題文

4次関数のグラフ$C:y=f(x)$は2つの変曲点$\mathrm{P},\mathrm{Q}$をもち、1本の複接線が引けて、異なる2点$\mathrm{A}(\alpha,f(\alpha)),\mathrm{B}(\beta,f(\beta))$が接点となる。また$f(x)$の4次の係数は1である。このとき、$\displaystyle\frac{d^3}{dx^3}f(x)=0$の解を$x=\gamma$、$\mathrm{C}(\gamma,f(\gamma))$、複接線を$l_1$、直線$\mathrm{PQ}$を$l_2$、$C$上の点$\mathrm{C}$における接線を$l_3$、$l_2$と$C$の交点のうち$\mathrm{P},\mathrm{Q}$と異なる点をそれぞれ$\mathrm{R},\mathrm{S}$、$l_3$と$C$の交点のうち$\mathrm{C}$と異なる点をそれぞれ$\mathrm{D},\mathrm{E}$とおく。ただし$x$座標について、$\mathrm{A}$より$\mathrm{B}$、$\mathrm{P}$より$\mathrm{Q}$、$\mathrm{R}$より$\mathrm{S}$、$\mathrm{D}$より$\mathrm{E}$の方が大きいとする。

(1)直線$l_1,l_2,l_3$は互いに平行であることを示せ。

(2)線分長の2乗比$\mathrm{AB}^2:\mathrm{PQ}^2$を求めよ。

(3)線分長の2乗比$\mathrm{RS}^2:\mathrm{DE}^2$を求めよ。

(4)直線$l_2$と$C$で囲まれる部分の面積$S$を$\alpha,\beta$で表わせ。

解答形式

(2),(3),(4)の答えはそれぞれ一桁の自然数a,b,c,d,e,f,g,h,i,jを用いて以下のように表されます。
センター、共通テスト形式で埋め、10桁の自然数abcdefghijを答えてください。
$\mathrm{AB}^2:\mathrm{PQ}^2=a:b$
$\mathrm{RS}^2:\mathrm{DE}^2=c:d$
$S=\displaystyle\frac{e\sqrt{f}}{ghi}(\beta-\alpha)^j$

求面積問題29

Kinmokusei 自動ジャッジ 難易度:
22月前

2

問題文

図の条件のもとで、緑の正三角形の面積を求めてください。

※ hexagram : 六芒星

解答形式

半角数字で回答してください。

ロープと面積

Hituzi 採点者ジャッジ 難易度:
14月前

1

問題文

長さnのロープがあるとき、ロープの始点と終点をくっ付けて出来る平面図形の最大の面積または近似値を求めよ。ただし、ロープは自由自在に曲げられ、無限の頂点を持つものとする。

解答形式

答えとその理由を書いてください。

数の大小

PonPon 自動ジャッジ 難易度:
13月前

3

問題

以下の問に関して, $2.71<e<2.72$ , $3.14<π<3.15$ とする.

(1) $a≠0$ のとき $a+1$ , $e^a$ の大小を比較せよ.

(2) $α>0$ かつ $β>0$ かつ $α≠β$ のとき,
$\hspace{11pt} $ $α-β$ , $β(logα-logβ)$ の大小を比較せよ.

(3) $e^π$ , $π^e$ の大小を比較せよ.

(4) $e^{e^e},e^{e^π},e^{π^e},e^{π^π},π^{e^e},π^{e^π},π^{π^e},π^{π^π} $ の大小を比較せよ.
$\hspace{11pt} $ここで, $a^{b^c}$は $a^{(b^c)} $を表す.

解答形式

(1) ① $a+1$ ② $e^a$
(2) ① $α-β$ $\:$② $β(logα-logβ)$
(3) ① $e^π$ ② $π^e$
(4) ①$e^{e^e}$②$e^{e^π}$③$e^{π^e}$④$e^{π^π}$⑤$π^{e^e}$⑥$π^{e^π}$⑦$π^{π^e}$⑧$π^{π^π} $
として問ごとに改行し,小さい順に左から半角数字を用いて並べよ.
(例)12345678

9月前

8

【補助線主体の図形問題 #084】
 2022年最後の図形問題です。今年ラストは補助線の威力を存分に味わえる問題を用意しました。存分に試行錯誤をお楽しみください。

お知らせ

2023年初頭は西暦を織り込んだ数学・パズルの問題をお送りします。1月1日夜から6~7日間お届けするつもりです(まだ作問中です)。どうぞお楽しみに!
※参考:今年年始にお届けした2022年問題
https://pororocca.com/problem/?tag=2022%E5%B9%B4%E5%95%8F%E9%A1%8C&sort_by=oldest

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

雑学的数学問題集 1

LUBE 自動ジャッジ 難易度:
52日前

3

おことわり

以下の問題において,1日は正確に24時間,1時間は正確に60分,1分は正確に60秒であるとする。

問題

1太陽年(すなわち地球の公転周期)を正確に31556925秒とする。1年を365日とした暦(以下「暦」という)と太陽年を合わせるため,ある$X$年の暦において,次の条件に当てはまったときにうるう年を施す。

うるう年の決め方
  1. $X$が4で割り切れる年を366日とする。これをうるう年という。

  2. $X$が100で割り切れる年には施されるはずだった,うるう年をキャンセルする。

  3. $X$が400で割り切れる年はうるう年とする。

このうるう年の仕組みにより,太陽年と大きくずれることなく暦を運用できる。

ある年$Y$年において,うるう年を勘案しても暦が太陽年と1日以上のずれを起こすことが分かった。このとき,$Y$の最小値を求めよ。ただし$Y$は自然数とする。

解答形式

解答は自動で判定されます。半角数字のみで答えてください。単位,カンマ区切り,0埋め,有効数字などは必要ありません。

◎ よい例
  • 2023
  • 1
  • 1000000000000
▲ わるい例
  • 2023年(単位)
  • 2,023(カンマ区切り)
  • 0002(0埋め)
  • 1.0×10^5(有効数字)