$\lfloor\pi\rfloor$ を求めてください.
半角数字で解答してください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$11 \times 11$ の長方形のマスのうちいくつかを次の条件を満たしながら黒色に塗っていきます.
このとき,黒色に塗ることができるマスの数は最大でいくつですか.
正整数で答えて下さい.
$2^{20}!!$ は $2$ で何回割り切れますか?
半角数字でお答え下さい。 計算機はご自由にお使いください。
$-1\leq k \leq 1$ を満たす実数 $k$ において,$10k + 11\sqrt{1-k^2}$ の最大値を $2$ 乗したものを求めてください.
正整数 $a , b$ の最大公約数を $g(\not=1)$,最小公倍数を $l$ としたとき,以下が成立しました.
$$\dfrac{l - 1}{g - 1} = 100$$
このときの $(a , b)$ の組としてあり得るものを全て求め,$a + b$ の総和を求めてください.
$$\angle{ADB}=\angle{ADC}=\angle{CDB}=90^°$$なる四面体 $ABCD$ の外接球に関して、体積を $V$ 表面積を $S$ としたとき、非負整数 $p$ を用いて、$V=p\pi,S=p\pi$ が成り立ちました。 このとき、四面体 $ABCD$ の体積の最大値の2乗を求めてください。
半角数字で入力して下さい。
$a, b$ を整数とします.$x$ についての方程式 $$ x^2+ax+b=0 $$について,$a+b=k$ となるすべての $(a, b)$ の組についてそれぞれの方程式を解いていくと,方程式が整数解をもつ(重解含む)ような $(a, b)$ の組が $4$ 種類のみ存在しました.$0≦k≦20$ としたとき, $k$ としてありうる値の総和を求めてください.
半角数字で解答してください。
$AB=13,BC=14,CA=15$ を満たす三角形 $ABC$ において、外心を $O$、辺 $AB$ の中点を $M$、辺 $AC$ の中点を $N$、$A$ から辺 $BC$ に下ろした垂線の足を $D$ とします。また、円 $DMN$ と $AD$ の交点を $X$、$MN$ について $X$ と対称な点を $Y$ とします。このとき四角形 $BCOY$ の面積を求めてください。
半角数字で入力してください。
赤いボールと青いボールがそれぞれ十分に入っている袋から $50$ 個のボールを取り出して一列に並べました.このとき,次の条件を満たす取り出し方において,取り出した青いボールの個数としてあり得る値の総和を求めてください. ・連続する $3$ 個のボールの少なくとも $1$ つは赤いボールである.
素数 $p$ に対して,$\dfrac{1}{p}$ を小数表記したときに循環する長さを $\Pi(p)$ で表します.正整数 $n$ に対し,$\Pi(p)=n$ なる $p$ のうち最小のものを $M(n)$ とするとき,以下の値を求めてください.ただし,有限小数の場合循環はしないとします. $$M(1)+M(2)+M(3)+M(4)+M(5)+M(6)$$
答えとなる数字のみを解答してください.
$8\times 8$のマス目に$1\times 2$のタイルと$1\times 1$のタイルを隙間なく並べる方法のうち,以下の条件を満たすものを考えます.
このような並べ方のうち,横向きの$1\times 2$のタイルの個数が最大となるものは何通りありますか? ただし,回転や裏返しによって一致する並べ方は区別します.また,$1\times 2$のタイルが横向きであるとは,長辺が行に平行であることを指します.
半角数字で入力してください.
鋭角三角形$ABC$において,外心を$O$とし,$\angle OAB$の二等分線と$BC$の交点を$D$とすると,$BD=OD$,$\angle AOD >90^\circ$を満たした.$AO=7$,$AD=10$であるとき,$BC$の長さを求めよ.
求める値は正整数$a,b$を用いて$a+\sqrt b$と表せるので,$a+b$を半角数字で解答してください.
円に内接する四角形 $ABCD$ の対角線の交点を $P$ としたとき, $$AB=14\, , AP=13\, ,AD=16\, ,BP=PD$$ が成り立ちました.このとき $AC$ の長さを求めてください.ただし求める答えは互いに素な正整数 $p,q$ を用いて $\dfrac{p}{q}$ と表せるので,$p+q$ を解答してください.