$p$ を素数,$n$ を自然数とする。$\log_{p}(n!)$ が有理数となるとき,その値を求めよ。
$\log_{p}(n!)$ の値をすべて求めてください。解答は小さい順に1行目から答えてください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
下図は、2つの正方形と円を組み合わせた図形です。点(●)は小さい正方形の辺を4等分する点で、円は大きい正方形に内接しています。大きい正方形の面積が60㎠のとき、小さい正方形の面積は何㎠ですか。
半角数字で入力してください。 例)10
2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。
半角数字で解答してください。
$AB=7$,$AB>AC$を満たす$\triangle ABC$について、線分$AB$上に$AC=BD$となるように点$D$をとる。直線$BC$を対称の軸として点$D$を対称移動した点を点Eとし、線分$BE,DE$を結ぶ。ここで、線分$DE$と線分$BC$は交点を持った。この点を点$M$とする。さらに、$\angle BAC$の二等分線と線分$BC$の交点を点$F$としたとき、$\angle AFB=135°$であった。$CM+DM=3$のとき、凹五角形$ABEMC$の面積を求めよ。
単位を付けずに半角数字で解答してください。
$ f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。 $ $ f(a,b) と f(c,d) の最大公約数として 考えられるものの最小値を求めよ。 $ $ ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。 $
$(1)$ 集合 $S_n=\{nx\mid x^3\leqq 2x^2+5x-6\}$ に対し,整数 $k\notin\overline{S_1\cap S_2}\cup S_3$ は何個あるか. $(2)$ $3$ 桁の素数は $200$ 個未満か.
命題は真なら $1$,偽なら $0$ として,$(1),(2)$ の和を半角数字で入力してください.
$\triangle ABC$の辺$AB$上に点$D$が,辺$AC$上に点$E$がそれぞれある.また,辺$BC$上に2点$P,Q$があり,4点$B,P,Q,C$はこの順に並んでいる. $\triangle BDP$の外接円の$B$における接線と,$\triangle CEQ$の外接円の$C$における接線とが点$F$で交わっている. $AD=2,DB=4,AE=5,EC=3,BP=1,PQ=10,QC=1$のとき,$AF=\dfrac{a\sqrt{b}}{c}$である.ただし,$a,b,c$はいずれも正の整数であり,$a,c$は互いに素である.また,根号の内部は十分簡単になっている. $a+b+c$の値を求めよ.
半角数字で解答してください.
三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.
$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.
$a$を定数とする。 このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。
a=𓏸𓏸というふうに解答してください。 また、全て半角で解答してください。 答えのみ入力してください。
$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください. ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.
$0,a,b,c$ は相異なる実数で,$a^3b+b^3c+c^3a=ab^3+bc^3+ca^3$ を満たすとき,次の値を求めよ.$$\min_{a,b,c}\dfrac{(a^3+b^3+c^3)(a^4+b^4+c^4+50)}{a^5+b^5+c^5}$$
半角数字で入力してください.
3つの正五角形がそれぞれ1頂点ずつを共有して図のように配置されています。緑で示した三角形の面積が22のとき、赤い三角形の面積を求めてください。
半角数字で回答してください。
4×4の格子に,次の規則に従って,1マスに1つずつ,素数を入れる.
・どの縦・横・斜めに並ぶ4つの数の和も,すべて等しくなるようにする. ・同じ数は2回以上使わない.
いま,図のように,一部のマスに数が記入されており,残りのマスに適切な数を入れることで,上の規則を満たすようにすべてのマスを埋めることができる.このとき,?のマスに当てはまる数を求めよ.