bMC_B

bzuL 自動ジャッジ 難易度: 数学 > 高校数学
2024年7月14日21:00 正解数: 29 / 解答数: 36 (正答率: 80.6%) ギブアップ数: 1
この問題はコンテスト「bzuL Math Contest」の問題です。

問題文

$728^{(729^{730})} + 730^{(729^{728})}$ は $3$ で最大何回割れますか.

解答形式

半角数字で解答してください.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

bMC_A

bzuL 自動ジャッジ 難易度:
4月前

57

問題文

あるサバイバルゲームには $2024$ 人の人が参加しており,以下を $2022$ 回繰り返します.

  • 残っている人の中からランダムに(等しい確率で)二人を選ぶ.その後,二人が対戦し,どちらかがゲームから脱落する.参加者の実力は同じであるため,脱落する側は等しい確率で選ばれる.

このとき,最後に残った二人に一度も対戦をしていない人が含まれる確率を求めてください.ただし,求める確率は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるため,$a+b$ を解答してください.

解答形式

半角数字で解答してください.

bMC_C

bzuL 自動ジャッジ 難易度:
4月前

31

問題文

凸五角形 $ABCDE$ は以下を満たします.
$$
\begin{cases}
AB=BC=CD=DE \\\\
2\angle{BAE} = \angle{CBA}\\\\
2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ}
\end{cases}
$$
このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.

解答形式

半角数字で解答してください.

bMC_D

bzuL 自動ジャッジ 難易度:
4月前

46

問題文

非負実数 $x,y,z$ が $x+y+z=1$ を満たすとします.
$$
x^{5001}y^{5002} + y^{5001}z^{5002} +z^{5001}x^{5002}
$$
の最大値は,互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができます.$a+b$ を素数 $4999$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

bMC_G

bzuL 自動ジャッジ 難易度:
4月前

19

問題文

$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコア
$$
\sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k)
$$
で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.

解答形式

半角数字で解答してください.

[A] 百の産声

masorata 自動ジャッジ 難易度:
4月前

25

問題文

次の和を $10$ 進小数で表し、小数第 $61$ 位から第 $70$ 位までを求めよ。
$$
\sum_{n=1}^{9}\frac{n(10^{2n+1}-1)}{9\cdot10^{n^2+2n}}
$$

解答形式

小数第 $61$ 位から第 $70$ 位まで ($10$ 桁の数) を、半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

B

nmoon 自動ジャッジ 難易度:
19日前

26

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

A

nmoon 自動ジャッジ 難易度:
19日前

30

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

4月前

19

問題文

$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

解答形式

ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

P4

Lamenta 自動ジャッジ 難易度:
26日前

22

問題文

$\triangle ABC$において,内心を$I$,重心を$G$とし,$I$ から$BC$,$CA$,$AB$に下ろした垂線の足をそれぞれ$D$,$E$,$F$とすると,$G$は$EF$上にあり,$IG=1$,$BD:DC=3:5$を満たした.このとき,$\triangle ABC$の周長の$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表されるので,$a+b$を半角数字で解答してください.

KOTAKE杯(J)

MrKOTAKE 自動ジャッジ 難易度:
3月前

35

問題文

△ABCの内心をI,∠A内の傍心をJとすると以下が成立した.
BI=7, CI=15, IJ=25
このときBCの長さを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

OMC不採用問題改題

bzuL 自動ジャッジ 難易度:
11月前

30

問題文

$14^3$ の $16$ 個の正の約数を並び替えた数列を $a_1,\ldots,a_{16}$ とおき,$15^3$ の $16$ 個の正の約数を並び替えた数列を$b_1,\ldots,b_{16}$ とおきます.この二つの数列のスコア
$$
\sum_{k=1}^{16} \frac{a_k}{b_k}
$$
で定めます.数列 $a,b$ の組として考えられるものは $(16!)^2$ 通りありますが,これらの組におけるスコアの(相加)平均を求めてください.ただし,求める値は互いに素な正整数 $p,q$ を用いて,$\dfrac{p}{q}$ と表されるため,$p+q$ を解答してください.

解答形式

半角数字で解答してください.

KOTAKE杯(I)

MrKOTAKE 自動ジャッジ 難易度:
3月前

40

問題文

凸四角形ABCDは内接円と外接円を持ち,AB=5, DC=3, AB//DCであった.
ACの長さの2乗を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.