集合の組の個数

noname 自動ジャッジ 難易度: 数学 > 競技数学
2024年5月15日22:18 正解数: 7 / 解答数: 18 (正答率: 38.9%) ギブアップ数: 0

問題文

$A,B$を全ての要素が$2$以上$2024$以下の自然数からなる集合で$A$と$B$の和集合の要素数が$2023$個であるものとします。$A,B$から要素を自由に$1$つずつ選ぶとき、どのように要素を選んでもその$2$つの数の最大公約数が$1$になるような$A,B$の組$(A,B)$の個数を求めてください。ただし、必要ならインターネットにある素数表を検索して用いても構いません。また、空集合も条件を満たすものとしてください。

問題を少し変更いたしました。

解答形式

答えは正の整数$n$を用いて$2^n$と表せますから$n$を半角で1行目に入力してください。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Incircles

simasima 自動ジャッジ 難易度:
27日前

9

問題文

周長が $10^5$ であり全ての辺の長さが整数であるような三角形の内接円の面積の総和を求めてください。

厳密な問題文
$a+b+c=10^5$ が成り立ち尚且つ各辺の長さが $a,b,c$ である三角形が存在するような順序付いた正整数の組 $(a,b,c)$ 全てについて各辺の長さが $a,b,c$ であるような三角形の内接円の面積の総和を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて$\frac{a}{b}\pi$ と表せるので、$a+b$ の値を解答してください。

競技冨安四発太鼓

simasima 自動ジャッジ 難易度:
27日前

6

問題文

冨安四発太鼓保存会は冨安四発太鼓の競技化を進めており、全ての曲の長さは $1$ 単位時間と定められました。
冨安四発太鼓のスコアは次のように定められています。
曲が開始した時刻を $0$ とし、太鼓が叩かれた時刻を小さい順に $t_1,t_2,t_3,t_4$ とした時に、スコアは $t_1^{39}t_2^{71}t_3^{94}t_4^{104}$ と定められます。
フニャオ君は曲の中で太鼓をランダムに $4$ 回叩きます。正確には区間 $[0,1]$ から実数を一様ランダムに選ぶという行為を独立に $4$ 回行い選ばれた実数を小さい順に並べ$t_1,t_2,t_3,t_4$ とした時、時刻 $t_1,t_2,t_3,t_4$ に太鼓を叩きます。
この時、フニャオ君のスコアの期待値を求めてください。

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\frac{a}{b}$ と表せるので $a+b$ の値を求めてください。

ただの連立方程式

sha256 自動ジャッジ 難易度:
12月前

8

問題文

次の$x,y$についての連立方程式を実数の範囲で解いてください。

$$
\begin{cases} \Large\frac{9}{x^2-xy+y^2}+\frac{7}{x^2+xy+y^2}=\frac{x}{256} \\ \Large \frac{9}{x^2-xy+y^2}-\frac{7}{x^2+xy+y^2}=\frac{y}{256} \end{cases}
$$

解答形式

解となる$(x,y)$の組全てについて$x+y$を足し合わせたものを半角英数字で入力してください。

OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度:
6月前

25

問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.

韓国産高校数学問題 - 1

nflight11 自動ジャッジ 難易度:
8月前

7

問題文

すべての正整数 $n$ に対して $a_{n+1}=a_{n}+a_{n+2}$ を満たす数列 $\{a_n\}$ に対して、次の式が成立する。

$$\sum_{n=1}^\infty \frac{a_n}{2^n}=1998, \sum_{n=1}^\infty \frac{a_{3n}}{3^n}=1106$$

この時、$|a_{1998}a_{1106}|$を求めよ。

解答形式

答えをそのまま入力しなさい。


問題文

$10^{12}$ 以下の正整数であって,$9$ の倍数または $10$ 進法表記した時どこかの桁に $9$ が現れる数はいくつありますか?

解答形式

非負整数で入力してください。

10月前

9

問題文

$$
x+ \frac{1}{x} =-1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{m^{3}-7m+9}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

対称式の総和②

nanohana 自動ジャッジ 難易度:
9月前

6

問題文

$$
x+ \frac{1}{x} =1
$$
のとき以下の値を求めよ
$$
\sum_{k=1}^{10^m}(x^{k}+\frac{1}{x^{k}}) \quad
$$
ただしmは自然数である。

回答形式

半角数字で答えてください。
また、複数個の値を取りうる場合は値の小さい順に改行して入力してください。

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
15月前

9

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

座王001(A1)

shoko_math 自動ジャッジ 難易度:
13月前

16

問題文

$0$ でない相異なる実数 $a,b,c,d$ が以下の関係式を満たすとき,$a^2+b^2+c^2+d^2$ の値を求めてください.
$\begin{cases}
a^3-12a^2-34a+bcd=0\\
b^3-12b^2-34b+cda=0\\
c^3-12c^2-34c+dab=0\\
d^3-12d^2-34d+abc=0\\
\end{cases}$

解答形式

半角数字で解答してください.

音符の達人

YoneSauce 自動ジャッジ 難易度:
10月前

14

問題文

赤い音符と青い音符の二種類の音符を横に並べたものを譜面と呼びます.
以下の条件を同時に全て満たすような譜面がいくつあるかを求めてください.

  • その譜面の赤い音符と青い音符の合計はちょうど $17$ 個である.
  • その譜面の最も左の音符は赤い音符である.
  • その譜面の左から $2$ 番目の音符は青い音符である.
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「赤い音符,青い音符,赤い音符」にならない
  • その譜面から任意の $3$ つの連続する音符を抜き出したとき,それが左から順に
    「青い音符,赤い音符,青い音符」にならない

解答形式

非負整数を半角数字で入力し解答してください。

正方形の中の八角形の面積

Fuji495616 自動ジャッジ 難易度:
14月前

9

問題文

四角形ABCDは正方形で、点E,F,G,Hは辺の中点です。四角形ABCDの面積が54㎠のとき、青い部分の面積は何㎠ですか。

解答形式

半角数字で入力してください。
例)10