2種類の数字からなる…

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年5月29日19:16 正解数: 26 / 解答数: 35 (正答率: 74.3%) ギブアップ数: 1

問題文

正整数 $N$ について,次の $2$ つのことがわかっています.

  • $N$ を素因数分解すると $N=3^2 \times 11 \times 31 \times 2,354,911,118,533$ である.
    ただし,「 $,$ 」は $3$ 桁ごとの区切りです.
  • $N$ の各桁に現れる数字は $2$ 種類あり,それらを $a,b\ (a \gt b)$ としたとき,$a$ と $b$ の現れる回数は等しい.

$10a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


ヒント1

下一桁だけ計算すれば $a$ か $b$ のどちらかに該当する数はわかります.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

三乗の和

noname 自動ジャッジ 難易度:
19月前

22

問題文

連続する8つの正整数の三乗の和で表せる数のうち、2000に最も近いものを求めよ。

解答形式

半角で入力してください。

自作問題1

aonagi 自動ジャッジ 難易度:
21月前

19

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.

素因数分解

lemonoilemon 自動ジャッジ 難易度:
20月前

27

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

2の累乗

G414xy 自動ジャッジ 難易度:
21月前

27

問題文

2^nの1桁目が9となる最小のnを求めよ。

解答形式

半角数字で答えること。

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
4年前

14

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

N3

orangekid 自動ジャッジ 難易度:
19月前

15

問題文

整数$x, y, z$は$0<x<28,0<y, 0\leq z<20$ と $37x-13y=2z$ を共に満たします。このような整数の組$(x,y,z)$はいくつあるでしょう?

解答形式

半角数字で入力してください。

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
22月前

44

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.

求長問題6

Kinmokusei 自動ジャッジ 難易度:
5年前

11

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

nCrの足し算

tsukemono 自動ジャッジ 難易度:
19月前

63

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください

自作問題No.1

Tehom 自動ジャッジ 難易度:
19月前

10

問題文

凸四角形$ABCD$は$\angle{BAC}$$=$$12^\circ$$,$$\angle {CAD}$$=$$30^\circ$$,$$\angle{ACD}$$=$$24^\circ$$,$$AB=CD$を満たします.このとき、$\angle{ADB}$の値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$度となるので、積$ab$の値を求めてください.

解答形式

半角数字で解答してください.

自作問題A1

imabc 自動ジャッジ 難易度:
21月前

12

問題文

正の実数 $x,y,z$ が $xyz=x+y+z+2$ を満たしています.このとき, $x+4y+9z$ の最小値を求めてください.

解答形式

答えを入力してください.

自作問題G1

imabc 自動ジャッジ 難易度:
21月前

9

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.