2種類の数字からなる…

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年5月29日19:16 正解数: 24 / 解答数: 33 (正答率: 72.7%) ギブアップ数: 1

問題文

正整数 $N$ について,次の $2$ つのことがわかっています.

  • $N$ を素因数分解すると $N=3^2 \times 11 \times 31 \times 2,354,911,118,533$ である.
    ただし,「 $,$ 」は $3$ 桁ごとの区切りです.
  • $N$ の各桁に現れる数字は $2$ 種類あり,それらを $a,b\ (a \gt b)$ としたとき,$a$ と $b$ の現れる回数は等しい.

$10a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.


ヒント1

下一桁だけ計算すれば $a$ か $b$ のどちらかに該当する数はわかります.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

三乗の和

noname 自動ジャッジ 難易度:
7月前

18

問題文

連続する8つの正整数の三乗の和で表せる数のうち、2000に最も近いものを求めよ。

解答形式

半角で入力してください。

自作問題1

aonagi 自動ジャッジ 難易度:
9月前

19

問題文

一辺の長さが $1$ の立方体 $1800$ 個から構成される,長さ $10,12,15$ の辺からなる直方体があります.
このとき,直方体の対角線のうちの $1$ つについて,これが内部を通過する立方体の個数を求めてください.

ただし,立方体の内部とは,頂点や辺・面そのものを含まないものとして考えます.

解答形式

求めるべき値は非負整数値として一意に定まるので,これを解答してください.

2の累乗

G414xy 自動ジャッジ 難易度:
9月前

26

問題文

2^nの1桁目が9となる最小のnを求めよ。

解答形式

半角数字で答えること。

素因数分解

lemonoilemon 自動ジャッジ 難易度:
8月前

25

問題文

$12$桁の整数$111111111111$の素因数の総和を求めてください.
但し,素因数の1つとして4桁の素数が含まれます.

解答形式

整数で答えてください.

nCrの足し算

tsukemono 自動ジャッジ 難易度:
7月前

57

問題文

次の計算をせよ。
$$
{}_{12}{\mathrm{C}}_{1}\quad+{}_{12}{\mathrm{C}}_{2}\quad+{}_{12}{\mathrm{C}}_{3}\quad+……+{}_{12}{\mathrm{C}}_{12}\quad
$$

解答形式

半角算用数字で解答してください

SMC100(問題5)

shoko_math 自動ジャッジ 難易度:
10月前

38

問題文

正の整数 $n$ に対し,$n$ の正の約数の個数を $f(n)$ と表します.
$f(f(n))=5$ となる最小の正の整数 $n$ を求めてください.

解答形式

半角数字で解答してください.

自作問題G1

imabc 自動ジャッジ 難易度:
9月前

7

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.

求面積問題24

Kinmokusei 自動ジャッジ 難易度:
3年前

12

問題文

扇形内部に図のように線を引きました。青い三角形の面積が12のとき、緑の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

対角線の本数

noname 自動ジャッジ 難易度:
9月前

26

問題文

正$n$角形の対角線の本数が素数になるような自然数$n$を全て求めてください。

解答形式

$n$としてあり得る数を半角で小さい順に1列に1つずつ縦に解答してください。
例:2,3と答えたい時
2
3
と解答してください。

1を含んだ規則的な数列

Tiri7_Ma13a_ 自動ジャッジ 難易度:
9月前

50

問題文

$ $ 地理奈ちゃんは,$1$ を含んだ数列をいくつか思い浮かべようとしています.
$ $ そこで,以下のルールをすべて守った数列を,良い数列と呼ぶことにします:

  • $1$ 以上 $9$ 以下の整数から $3$ つを選んでいる数列である.
  • その数列は公差が $0$ でない等差数列である.
  • 数列のどこか $1$ 項に必ず $1$ を含んでいる.

$ $ この時,良い数列は全部でいくつありますか?

解答形式

非負整数を半角で解答してください.

「おおきなかぶ」F問題

Furina 自動ジャッジ 難易度:
14月前

17

問題文

数列 $a_n$ は,$a_1=\sqrt{2-2\cos{\left(\dfrac{882}{5}\right)^\circ}},a_2=1-2\cos{\left(\dfrac{882}{5}\right)^\circ}$ として,以下の漸化式を満たします.
$$a_{n+1}=\dfrac{(a_n)^2-1}{a_{n-1}}(n=2,3,4,\cdots)$$
 このとき,$\lfloor (a_{49})^2\rfloor$ の値を求めてください.ただし,$-0.998027<\cos{\left(\dfrac{882}{5}\right)^\circ}<-0.998026$を用いても構いません.

解答形式

$\lfloor (a_{49})^2\rfloor$ を解答してください.$\lfloor x\rfloor$ は$x$を超えない最大の整数です.

座王001(サドンデス6)

shoko_math 自動ジャッジ 難易度:
10月前

22

問題文

$S=\{1,2,3,4,5,6\}$ とします.$S$ の相異なる部分集合 $A,B,C$ の組であって,$A\subset B\subset C$ を満たすものの個数を求めてください.
(ただし,$A,B,C$ は空集合や $S$ に一致してもよいものとします.)

解答形式

半角数字で解答してください.