$AB<AC$ なる三角形 $ABC$ について,$\angle A$ (内角) の二等分線と $BC$,円 $ABC$ の交点をそれぞれ $D, M(\neq A)$,$A$ から $BC$ に下ろした垂線の足を $E$,$AC$ の中点を $N$,円 $ENC$ と円 $ABC$ の交点を $X(\neq C)$,円 $XMD$ と $BC$ の交点を $P(\neq D)$,$PM$ の中点を $Q$ とします.
$$AB=9, AC=14, QN=8$$
であるとき,$BC$ の長さは正整数 $a, b, c$ を用いて $\dfrac{a\sqrt b}{c}$ と表せるので,$a+b+c$ を解答してください.
半角数字で解答してください.
この問題を解いた人はこんな問題も解いています