勇者の行く手を阻むもの

kusu394 自動ジャッジ 難易度: 数学 > 競技数学
2024年6月15日15:41 正解数: 6 / 解答数: 9 (正答率: 66.7%) ギブアップ数: 1

問題文

勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.

しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.

勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.


ヒント1

最短経路ごとに数えるのは大変です.別のうまい数え方を探してください.

ヒント2

"主客転倒 数学" で検索すると参考になる記事がたくさん出てくると思います.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

没問2

mani 自動ジャッジ 難易度:
13日前

7

$m^{n+1}+n^m+1=2026$ を満たす正整数の組 $(m,n)$ を全てについて,$mn$の総和を求めてください.

極大値

Ultimate 自動ジャッジ 難易度:
18月前

7

問題文

次の関数の極大値を求めよ。
y=|x^2-7x+10|+x

解答形式

半角数字でお願いします。

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

没問1

mani 自動ジャッジ 難易度:
13日前

4

以下の式を満たす正整数の組 $(x,y,z)$ すべてについて,$xyz$ の総和を求めてください.
$$x^3+y^3+z^3+\dfrac{xyz}{16}=2026$$

ゲーム

tomorunn 自動ジャッジ 難易度:
9日前

7

AさんとBさんは、黒板をつかって次のようなゲームをします。
ルール
・自分のターンでは、黒板に書かれている$1$以外の正整数を一つ選び、分割を行う。
自分のターン開始時に分割できる数がない場合敗北となる。
分割...その数を$2$つ以上の正整数の和に分解すること。たとえば、$5$は$(4,1),(3,2),(3,1,1),(2,2,1),(2,1,1,1),(1,1,1,1,1)$のいずれかに分割される。
はじめ、黒板には$1024$以下の正整数$X,Y,Z$が書かれています。Aさんから操作を開始し、両者が最適戦略をとりつづけるとき、Bさんが勝つような$(X,Y,Z)$の組の個数を求めなさい。

没問

poino 自動ジャッジ 難易度:
16月前

5

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

8日前

7

問題文

$m,n$を整数とします。
$$(m+n)!+2025^{{n}^{m}}=2026^{mn+1}$$
を満たす組$(m,n)$について、$mn$の総積を求めてください。

解答形式

半角数字で入力してください。

没問

tomorunn 自動ジャッジ 難易度:
12日前

5

$n$進法でも$n+1$進法でも$3$桁の回文数になるような正の整数をn-今年の数と定義します.
たとえば,$2026$は$13$進法で$BCB_{(13)}$,$14$進法で$A4A_{(14)}$となるので13-今年の数です.
すべての7-今年の数について,その総和を求めてください.
ただし,$n$進法における$3$桁の回文数とはある正整数$X(1\le X\le n-1),Y(0\le X\le n-1)$を用いて$XYX_{(n)}$と表せる数のこととします.

Combination

Not_here 自動ジャッジ 難易度:
17月前

10

問題文

$X$($0<X<2025$)個の玉から$Y$($0<Y<2025$)個を同時に取り出す操作を考える.
この操作が成り立つ$X,Y$について,玉の取り出し方の総和を求めなさい.

但しボールは互いに区別できるものとする.

解答形式

答えは$a^b+c(a,b,c∈ℤ)$通りと書けます.$a,b,c$として様々なものがありますが,
$a+b+c=Z(Z∈ℤ ,Z>0)$について$MIN(Z)$の値を求めて下さい.

追記:8/6日問題文の訂正を行いました.もし,もとの問題文のせいでミスしたという方がいましたら,大変申し訳ありません.

素数と整数

skimer 採点者ジャッジ 難易度:
8月前

7

問題文

$n\;を自然数とする$
$n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください

Bar Chart

aa36 自動ジャッジ 難易度:
5月前

12

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

エイト・ルーク

kitotch 自動ジャッジ 難易度:
7月前

2

問題文

チェス盤(8*8)に8つのルークを置く。
このとき、どのルークもほかのルークの利きに置いてはいけない。
このような条件を満たすルークの置き方(回転、鏡像は別とみなす)の場合の数を求めよ。

解答形式

半角数字でお答えください。