$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて, $$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$ の総和を $f(n)$ とします. $f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.
$0$ 以上 $6$ 以下の整数からなる組 $(a_1,a_2,a_3,a_4,a_5)$ のうち以下を満たすものの個数を求めてください. $$(a_1a_2)^3+(a_2a_3)^3+(a_3a_4)^3+(a_4a_5)^3+(a_5a_1)^3\equiv0\pmod{7}$$
正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1 $ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます. $$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$ $b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.
図のような、一目盛りが1cmの方眼に書いた図形があります。三角形ABCと三角形ACEは合同で、角ADF=90°です。DFは何cmですか。
四捨五入して小数第2位まで、半角数字で答えてください。 例)$\frac{52}{3}$→17.33
三角形 $ABC$ があり,以下が成り立っています:
$$AB = 7 , \angle A + 2\angle C = 60^{ \circ } .$$
いま,辺 $BC$ 上に $\angle CAP = 3\angle BAP$ をみたす点 $P$ をとり,さらに辺 $AC$ 上に $\angle APQ = 2\angle ACB$ をみたす点 $Q$ をとったところ,$BQ = 2$ が成立しました.このとき,線分 $AC$ の長さは互いに素な正整数 $a , b$ を用いて $\dfrac{ a }{ b }$ と表せるので,$a + b$ を解答してください.
半角数字で解答してください.
$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.
十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします. 相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.
100をe進数で表記すると何桁になるか。(整数部分のみ)
半角数字+「桁」という文字(例:1桁)
以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.
また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.
階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.
答えを入力してください.
実数$x$は以下の条件をすべて満たす。
このような$x$全てについて、$20x$の総和を求めよ。
$\triangle{ABC}$ の外接円を $O_1$ とし,辺 $CA$,辺 $CB$,円 $O_1$ に接する円を $O_2$ とします.また,円 $O_2$ と辺 $CA$ ,辺 $CB$,円 $O_1$ の接点をそれぞれ $P,Q,T$ とし,直線 $TP$ と円 $O_1$ の交点を ${R}(\ne{T})$ とし,直線 $TQ$ と円 $O_1$ の交点を $S(\ne{T})とします.$ $TA=23,TB=35,TC=57$ のとき,(四角形 $ARCS$ の面積):(四角形 $BSCR$ の面積)は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を解答してください.
赤い音符と青い音符の二種類の音符を横に並べたものを譜面と呼びます. 以下の条件を同時に全て満たすような譜面がいくつあるかを求めてください.
非負整数を半角数字で入力し解答してください。