全 3 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい
半角で、3人の班=Xで答えるものとする
$$ \sqrt{\sqrt{\sqrt{\sqrt{{{{{{{{{{log_xx}^{log_{2}{8}}}^{log_{3}{81}}}^{log_{4}{16}}}^{log_{5}{25}}}^{log_{6}{36}}}^{log_{7}{49}}}^{log_{8}{64}}}^{log_{9}{81}}}^{log_{10}{100}}}}}} $$ $$ この解は、どれか。 $$ $$ (1)89(2)90(3)91(4)92 $$
$$ |2^{n-1}+1| $$ $$ nが、整数のとき、上の式は、必ず(α)である。 $$ $$ (1)負(2)正 $$
$$ |\sqrt{m}^{2}|=log_216\\の解は、どれか(m>0)。 $$ $$ (1)4(2)3(3)2(4)1 $$
$$ i^\sqrt{1024} $$
$$ a<0のとき、a=|\sqrt{2^{log_327*log_216}}|\\のaについて値? $$
$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.
半角数字で入力してください.
$x,y$を自然数とする。$x^2+8y$と$y^2+8x$がともに平方数になるような$x,y$の組$(x,y)$をすべて求めよ。
例えば、$(x,y)=(1,2),(13,4),(51,16)$と答えたい場合は
12 134 5116
と入力してください。解の組は$x$の値が小さい順に並べてください。$x$の値が同じで$y$の値が異なる場合は$y$の値が小さい方を先に入力してください。
連続する5つの整数の和は必ず5の倍数になる。この理由を、nを使った式で説明しなさい
数字は半角とする
$$ \sqrt{2^{log_39*log_232}} $$
問題文 三角形ABCがあり、角BAC=90°、BCの中点をMとしたとき角ACB=45°でありAMの長さは2である。この三角形の面積を求めなさい。
解答形式
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.