面積の最大値

skimer 採点者ジャッジ 難易度: 数学 > 高校数学
2024年9月6日11:03 正解数: 5 / 解答数: 5 (正答率: 100%) ギブアップ不可

全 5 件

回答日時 問題 解答者 結果
2024年9月12日7:47 面積の最大値 noname
正解
2024年9月10日20:31 面積の最大値 Weskdohn
正解
2024年9月9日21:34 面積の最大値 akkinandaze
正解
2024年9月8日13:42 面積の最大値 MI6174
正解
2024年9月8日9:11 面積の最大値 kiwiazarashi
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

素数と整数

skimer 採点者ジャッジ 難易度:
23日前

5

問題文

$n\;を自然数とする$
$n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください

整数

kiriK 自動ジャッジ 難易度:
7月前

17

$
f(x,n)=x^{2^{n+1}}-x^{2^{n}}とおく。
$
$
f(a,b) と f(c,d) の最大公約数として
考えられるものの最小値を求めよ。
$
$
ただし、a,b,c,dはいずれも2以上の自然数で、a\neq b \neq c \neq d とする。
$

簡単めな幾何問題

kiwiazarashi 自動ジャッジ 難易度:
9月前

5

問題文

緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。
今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。

解答形式

答えは◯cm^2となるので、◯の部分のみを答えてください。

余談

2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。

連理湯方程式の利用2

kokoyu 自動ジャッジ 難易度:
11月前

13

問題文

34人の生徒を3人の班と4人の班に分けたところ、4人の班は3人の班より5つ多くできた。3人の班の数と、4人の班の数をそれぞれ求めなさい

解答形式

半角で、3人の班=Xで答えるものとする

C. 地雷

G414xy 自動ジャッジ 難易度:
8月前

14

問題文

4x4のマス目のうち、0個以上のマスを選んで1つずつ地雷を置き、すべてのマスに周囲8マス(自身を含まない)の地雷の数を書きます。
地雷を置くすべてのパターンにおいて書かれている数字の総和を求めてください。

解答形式

半角数字で入力してください。

対数と整数

RentoOre 自動ジャッジ 難易度:
14月前

9

問題文

$p$ を素数,$n$ を自然数とする。$\log_{p}(n!)$ が有理数となるとき,その値を求めよ。

解答形式

$\log_{p}(n!)$ の値をすべて求めてください。解答は小さい順に1行目から答えてください。

8月前

3

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

第1問

sulippa 採点者ジャッジ 難易度:
20日前

1

設問1

数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。

解答形式

半角1スペースで答えのみ

No.07 三角形と必要条件

Prime-Quest 自動ジャッジ 難易度:
15月前

1

問題

整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.

  • ある非負偶数 $k$ で $z_k\lt 2$ は,辺長 $x^3+8,\ y^3+8,\ 6xy+8$ の三角形が存在する必要条件である.

解答形式

半角数字で入力してください.

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
3月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8

不等式

skimer 採点者ジャッジ 難易度:
22日前

1

問題文

$a>0,b>0$ のとき、
$a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ

解答形式

記述形式でお願いします
入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください

第4問

sulippa 採点者ジャッジ 難易度:
20日前

1

設問4

数列 ${a_n}$ が $a_0=1, a_1=0, a_2=-1$ および漸化式
$$ a_{n+3} - 3a_{n+2} + 3a_{n+1} - a_n = 2^n \quad (n \ge 0) $$
を満たす。一般項 $a_n$ を求めよ。

解答形式

例)ひらがなで入力してください。