[A] エグい数

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2025年8月16日21:00 正解数: 18 / 解答数: 20 (正答率: 90%) ギブアップ数: 0
整数 まそらた杯 競技数学
この問題はコンテスト「第4回まそらた杯」の問題です。

解答

34375


解説

定理: $n=1,2,\dots$ に対して、$n$ 桁のエグい数であって、$5^n$ の倍数であるものが存在する。

証明:

数学的帰納法を用いる。$n=1$ のとき、$5$ は $1$ 桁のエグい数で、$5^1$ の倍数である。$k=1,2,\ldots$ に対し、$n=k$ でそのような数 $B_k$ が存在すると仮定し、整数 $b_k$ を用いて $B_k=5^k\cdot b_k$ とおく。このとき $d=3,4,5,6,7$ のそれぞれに対し、$B_k$ の $10$ 進数表記の左に数字 $d$ をくっつけて $k+1$ 桁にした数はエグい数であり、$d\cdot 10^{k} + B_k = 5^k(d\cdot 2^{k} +b_k)$ と表せる。$d=3,4,5,6,7$ を $5$ で割ったあまりは全て異なるので、$2^k$ と $b_k$ の値に応じて うまく $d=3,4,5,6,7$ のいずれか一つを選ぶことで、$d\cdot 2^{k} +b_k$ が $5$ で割り切れるようにできる。この時選んだ $d$ を $d_{k}$ とすれば、$B_{k+1}=d_{k}\cdot 10^{k} + B_k$ は $k+1$ 桁のエグい数であり、$5^{k+1}$ の倍数となるので、定理が示された。(証明終)

上記の証明の流れで、$B_n$ を $n=1,2,...$ と順に構成していくと、$B_1=5, B_2=75, B_3=375, B_4=4375, B_5=34375$ なので、答えは $34375(=11\times5^5)$ である。なお、$n$ 桁のエグい数を $5^n$ で割ったあまりは全て異なることが上の定理と同様に証明できるので、$34375$ 以外に条件を満たすものはない。


補足

・当初はオリジナル問題として作問しましたが、各桁が奇数(つまり $1,3,5,7,9$ のいずれか)であって、$5^n$ で割り切れる $n$ 桁の数が存在することを示す問題が、第33回 USAMO(2003年)に出題されていたようです(https://artofproblemsolving.com/wiki/index.php/2003_USAMO_Problems/Problem_1 ,2025年7月7日アクセス)。また、そのような $n$ 桁の数からなる数列がOEISに登録されています (https://oeis.org/A151752 ,2025年7月7日アクセス)。

・また、$10=2\cdot 5$ なので、$5$ を $2$ に置き換えても同様のことが成り立ちます。たとえば、各桁が $2$ と $7$ (あるいは別の偶数と奇数のペアでも良い)からなる $n$ 桁の数であって、$2^n$ の倍数であるようなものが唯一存在します(https://x.com/solove_math/status/797082255801753600, 2025年7月7日アクセス)。


おすすめ問題

この問題を解いた人はこんな問題も解いています


問題

半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。

はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:

$n$ ターン目の行動:
アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。

さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。

解答形式

半角数字のみで1行目に入力せよ。


問題

以下の問いに答えよ。

(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を

$$
\displaystyle f(x)=\frac{ax+b}{cx+d}
$$

と定義すると、

$$
\frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2}
$$

の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。

(2)実数 $x$ に対して関数 $g(x)$ を

$$
\displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \
$$

と定義すると、

$$
\displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2}
$$

の値は $x$ によらないある整数となる。その値を求めよ。

解答形式

0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。

(1)の答えを1行目に入力せよ。

(2)の答えを2行目に入力せよ。

たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、

816
-817

と入力せよ。


問題

複素数の定数 $\alpha$ に対し、$|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たす複素数 $z$ 全体の集合を $D$ とおく。以下の解答欄を埋めよ。

(1)$\alpha=0$ のとき、$D$ は複素数平面上で原点を中心とする半径 $\fbox{ア}$ の円の周上および内部になる。

次に $|\alpha|>0$ の場合を考える。以下、$\displaystyle \arg \alpha=\frac{6}{11}\pi$ とする。

(2) $|\alpha|=1$ のとき、$D$ は複素数平面上で原点を通る直線となり、偏角が $\displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi,\ \frac{\fbox{オカ}}{\fbox{キク}}\pi$ であるような複素数を全て含む。ただし $0\leq \displaystyle \frac{\fbox{イ}}{\fbox{ウエ}}\pi < \frac{\fbox{オカ}}{\fbox{キク}}\pi<2\pi$ とする。

(3) $0<|\alpha|<1$ の場合を考えよう。原点を中心として $z$ を反時計回りに $\displaystyle -\frac{\fbox{イ}}{\fbox{ウエ}}\pi$ だけ回転させた複素数を $w$ とおく(ただし $z=0$ のときは $w=0$ とする)。$z$ が $|z- \alpha\bar{z}|\leq1-|\alpha|^2$ を満たして動くときに $w$ が動く領域について考察することで、$D$ に対応する複素数平面上の図形が明らかになる。特に $|\alpha|=0.4$ のとき、$D$ の面積は $\displaystyle\frac{\fbox{ケコ}}{\fbox{サシ}}\pi$ である。

解答形式

解答欄ア〜シには、それぞれ0から9までの数字が1つ入る。同じカタカナの解答欄には同じ数字が入る。

(1)の答えとして、文字「ア」を半角で1行目に入力せよ。

(2)の答えとして、文字列「イウエオカキク」を半角で2行目に入力せよ。

(3)の答えとして、文字列「ケコサシ」を半角で3行目に入力せよ。

なお、分数はできるだけ約分された形となるように答えること。

1と4

udonoisi 自動ジャッジ 難易度:
56日前

18

問題文

非負整数 $n$ に対して, $a_n$ を以下で定めます.$$a_0=1,\quad a_{n+1}=10a_n+4$$ このとき, $a_n$ が累乗数となるような非負整数 $n$ に対して, $a_n$ の総和を求めてください.
ただし, 累乗数とは, 自然数 $a$ と$2$ 以上の自然数 $b$ を用いて $a^b$ と表せる数です.

解答形式

例)整数を答えてください.

KOTAKE杯007(J)

MrKOTAKE 自動ジャッジ 難易度:
36日前

24

問題文

$AB<AC$ を満たす鋭角三角形 $ABC$ があり, $A$ から $BC$ に下ろした垂線の足を $H$ とし,線分 $AH$ 上に $\angle ABP = \angle ACP$ を満たす点 $P$ をとります.また,線分 $BC$ と三角形 $ACP$ の外接円の交点のうち $C$ でないものを $D$ とし,直線 $BP,AD$ の交点を $E$ とすれば,
$$BP=CD=5,\quad PE=3$$
が成立したので三角形 $ABC$ の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

14月前

33

問題文

$n$ を $3$ 以上の整数とする。はじめ、黒板には $n-1$ 個の有理数 $\displaystyle \frac{1}{2}, \frac{1}{3},\ldots, \frac{1}{n} $ が書かれている。黒板から $2$ つの有理数 $x,y$ を選んで消し、新たに有理数 $\displaystyle \frac{x+y}{1+xy} $ を書くという操作を繰り返し行う。そして、最後に黒板に残った $1$ つの有理数を既約分数として表すと、分子が $899$ で割り切れた。

このようなことが起こる最小の $n$ を求めよ。

解答形式

条件を満たす $n$ の最小値を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

KOTAKE杯007(I)

MrKOTAKE 自動ジャッジ 難易度:
36日前

29

問題文

三角形 $ABC$ があり,内心を $I$ とし直線 $AI$ と $BC$ の交点を $D$ とすると三角形 $BDI$ の外接円は三角形 $ABC$ の外接円に点 $B$ で内接し,以下が成立しました.
$$BD=12,\quad BI=10$$
このとき線分 $AC$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

14月前

21

問題文

$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

解答形式

ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

KOTAKE杯007(M)

MrKOTAKE 自動ジャッジ 難易度:
36日前

20

問題文

三角形 $ABC$ があり内心を $I$ とし,辺 $BC$ の中点を $M$ とすると,
$$AB:AC=3:5,\quad AI=IM=20$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(Q)

MrKOTAKE 自動ジャッジ 難易度:
36日前

25

問題文

鋭角三角形 $ABC$ があり,$A$ から $BC$ におろした垂線の足を $H$ とします.三角形 $ABC$ の外接円の,$C$ を含まない方の弧 $AB$ 上に点 $P$ をとれば,
$$\angle APH=90^\circ ,\quad BH=3,\quad CH=4,\quad AP=10$$
が成立したので線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

Same🦈

Hapican_ 自動ジャッジ 難易度:
14日前

19

問題文

$AB=4,\angle ACB=45^\circ,AB<AC $を満たす鋭角三角形$ABC$がある。辺$BC$の中点を$M$とすると、線分$AM$上に$CP=4$となる点$P$をとることができた。また、点$Q$を辺$BC$に関し$A$と反対側に$\angle ACP=\angle PAQ,BQ=CQ$になるようにとったところ、$BQ=7$となった。このとき、線分$BC$の長さを求めよ。

解答形式

求める長さの二乗、$BC^2$は互いに素な自然数$p,q$を用いて$\frac{p}{q}$と表せるので、$p+q$の値を求めてください。

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
5月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.