Q3.素数

34tar0 自動ジャッジ 難易度: 数学 > 競技数学
2024年9月22日14:41 正解数: 16 / 解答数: 18 (正答率: 88.9%) ギブアップ数: 0
整数 素数 N

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。


ヒント1

$4,6,26$ はどれも $3$ で割った余りが違います。

ヒント2

$p \equiv 0,1,2 \pmod 3$ のときに分け、$p^2,p^3$ を $3$ で割った余りを考えましょう。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数

kiriK 自動ジャッジ 難易度:
10月前

23

$自然数Xについて、Xの各位の数字を足し合わせた値をk(X)とおく。$
$4桁の自然数A,Bにおいて$$$
\begin{eqnarray}
\frac{k(A)}{k(B)}=\frac{A}{B}=n
\end{eqnarray}
$$$ (nは2以上の整数)$
$のとき、Aの取りうる値は何個あるか。$
半角数字のみで答えよ

整数

kiriK 自動ジャッジ 難易度:
10月前

27

$
a!=b^{2}+2となる自然数a,整数bについて、
$
$
k(a,b)=a+bとおく。
$
$
k(a,b) の値として考えられるものは何個あるか。
$

幾何問題24/1/8

miq_39 自動ジャッジ 難易度:
20月前

10

問題文

$AB=5,AC=9$ なる三角形 $ABC$ があり,その外接円を $\Gamma$ とします.辺 $BC$ の中点を $D$ とすると,$B$ における $\Gamma$ の接線と半直線 $DA$ が点 $E$ で交わりました.また,辺 $AC$ 上の点 $F$ が $\angle CDF=\angle BEA$ をみたしています.$DF=\dfrac{10}{3}$ のとき,線分 $AE$ の長さは互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください。

整数問題(2)

tsukemono 自動ジャッジ 難易度:
13月前

43

問題文

$\frac{n}{144}$が$1$より小さい既約分数になるような自然数$n$の個数を求めよ。

解答形式

半角算用数字で答えてください。

初投稿

Upasha 自動ジャッジ 難易度:
6月前

17

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

ハロウィンの体育

GaLLium31 自動ジャッジ 難易度:
5月前

19

問題文

正整数 $n$ に対して $n^{10n}$ を $31$ で割ったあまりを $f(n)$ としたとき,
$$\sum_{k=1}^{12000} f(k)$$
の値を求めてください.

解答形式

半角英数字で回答してください.

自作問題G1

imabc 自動ジャッジ 難易度:
17月前

8

問題文

https://mathlog.info/articles/Lf8QaKPklfv156yuq309 問題13)
 三角形$ABC$において外接円,内接円,角$A$内の傍接円の半径をそれぞれ$R,r,r_A$とすると

$$R=14,r=6,r_A=19$$

が成り立ちました.このとき$BC$の長さの二乗を求めてください.

解答形式

答えを入力してください.

下位5桁

Ultimate 自動ジャッジ 難易度:
16月前

8

問題文

101^100の下位5桁(万の位まで)を求めよ。

解答形式

半角でお願いします。

KOTAKE杯001(N)

MrKOTAKE 自動ジャッジ 難易度:
13月前

26

問題文

三角形$ABC$の外心を$O$とする. $AO$を直径とする円と$AB$,$AC$の交点のうち$A$でないものをそれぞれ$D,E$とすると$DE=3,CD=5$であり四角形$BCED$は内接円を持ちました.
このとき三角形$ABC$の面積を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

整数問題2/6

miq_39 自動ジャッジ 難易度:
2年前

29

問題文

$2^{n}+6n+1$が平方数となるような自然数$n$の値をすべて求めよ.

解答形式

半角数字で解答してください.解が複数ある場合は,小さいものから順に,1行に1つずつ書いてください.

KOTAKE杯007(N)

MrKOTAKE 自動ジャッジ 難易度:
35日前

20

問題文

鋭角三角形 $ABC$ があり重心を $G$,垂心を $H$ とします.線分 $GH$ の中点を $M$ とすれば,直線 $AM$ は $ \angle BAC$ を二等分し,

$$BC=30,\quad CH=25$$
が成立しました.このとき線分 $AB$ の長さの $2$ 乗を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯007(L)

MrKOTAKE 自動ジャッジ 難易度:
35日前

23

問題文

鋭角三角形 $ABC$ があり,点$A,B,C$ から対辺におろした垂線の足をそれぞれ $D,E,F$ とします.$AD,EF$ の交点を $P$ とすると,以下が成立しました.
$$DE=37,\quad EF=40,\quad AP:PD=5:6$$
このとき線分 $DF$ の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.