三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.
このとき,3点 $ C,H,S$ が同一直線上にあった.
$$AH=17 , AO=11$$
のとき,三角形 $ABC$ の面積を求めてください.
答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.
半角数字で解答してください.
$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。
条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。
条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。 2行目以降に改行して回答すると、不正解となるので注意せよ。
4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:
$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$
互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.
焼き鳥はタレに限るという垂川さんと、いやいや塩しかありえないという塩見さんは、激論の末、ゲームで決着をつけることになった。
$N,M$ をそれぞれ $1$ 以上 $2024$ 以下の整数とする。同じ大きさの焼き鳥が $N\times M$ の長方形状に並べられている。白と黒の串がたくさんある。垂川さんと塩見さんは、縦横いずれかの列または行を選んで、白または黒の串を端まで刺し通すという行動を、垂川さんから始めて交互に行う。ただし、各列または行にはそれぞれ $1$ 本の串しか刺し通すことができない。
合計 $N+M$ 本の串を刺し終わったとき、刺された串の色が縦と横で同じ焼き鳥の数を $S$、異なる焼き鳥の数を $D$ とする。$S>D$ ならば垂川さんの勝ち、$S<D$ なら塩見さんの勝ち、$S=D$ なら引き分けとする。
垂川さんの行動にかかわらず、うまく行動すれば塩見さんが必ず勝てるような組 $(N,M)$ はいくつあるか。
条件を満たす組 $(N,M)$ の数を半角数字で1行目に入力せよ。 2行目以降に改行して回答すると、不正解となるので注意せよ。
$AB=2,AC=1$ をみたす三角形 $ABC$ の垂心を $H$,内心を $I$,外接円を $\Gamma$ とします.直線 $AH$ と $BI$ の交点を $D$ とし,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $X$ とすると,$AX=BX$ となりました.このとき,辺 $BC$ の長さの $2$ 乗を求めてください.ただし,求める値は,互いに素な正整数 $a,c$ と平方因子をもたない正整数 $b$ を用いて $\dfrac{a+\sqrt{b}}{c}$ と表されるので,$a\times b\times c$ を解答してください.
半角数字で入力してください。
$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である. $n$ および $N$ の値を求めよ.
一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.
$1,\ldots,2024$ の並べ替え $a_1,\ldots,a_{2024}$ に対して,スコアを $$ \sum_{k=1}^{2024} (2024a_k-k-1)(a_k-2024k) $$ で定めます.$2024!$ 通りの並べ替えに対して,スコアとしてあり得る値はいくつありますか.
$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。
線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。
$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。
(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると
$$ \sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}} $$
である。
(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は
$$ \lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}} $$
ア〜カには、0から9までの数字が入る。 (1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。 (2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。 なお、「ア」や「オ」には0や1が入ることもありうる。 また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。 3行目以降に改行して回答すると、不正解となるので注意せよ。
以下の条件をともに満たす $12$ 桁の正整数 $M$ はいくつありますか?
ただし,$M,A,E$ の最高位の数字は $0$ でないものとします.
条件を満たす $12$ 桁の正整数 $M$ の個数を,半角数字で余分な空白や改行を入れずに解答してください.
正の実数に対して定義され,正の実数値を取る関数 $f$ であって,任意の正の実数 $x,y$ に対して, $$ f(x)f(yf(x))=2024f(x+2024y) $$ を満たすもののうち, $f(1)$ が整数になるものについて,$f(2)$ の整数部分としてありうる数はいくつありますか.
円 $\Gamma$ に内接する凸四角形 $ABCD$ において,直線 $AB,CD$ の交点を $S$,$A$ における $\Gamma$ の接線と直線 $CD$ の交点を $T$ とします.$S,C,D,T$ がこの順に並んでおり,かつ, $$AB=10,SC=16,TD=5,BC\cdot AD=32$$ が成立しているとき,線分 $SB$ の長さを求めてください.ただし求める長さは,正整数 $a,b$ を用いて $\sqrt{a}-b$ と表されるので,$a+b$ の値を解答してください.
凸五角形 $ABCDE$ は以下を満たします. $$ \begin{cases} AB=BC=CD=DE \\\\ 2\angle{BAE} = \angle{CBA}\\\\ 2\angle{ECA} = \angle{AEC} = \angle{BAE} + 30^{\circ} \end{cases} $$ このとき,互いに素な正整数 $a,b$ を用いて $\angle{EDB}=\bigg(\dfrac{a}{b}\bigg)^{\circ}$と表すことができるので,$a+b$ を答えてください.