OMC不採用問題(700C)

MARTH 自動ジャッジ 難易度: 数学 > 競技数学
2024年10月25日17:37 正解数: 1 / 解答数: 5 (正答率: 20%) ギブアップ数: 2

$4$ 行 $6$ 列のマス目の各マスに $1$ 以上 $12$ 以下の整数を書き込みます. 上から $i$ 行目, 左から $j$ 列目にあるマスに書かれた数を $a_{i,j}$ で表すとき, 以下を満たす書き込み方は何通りありますか?

  • $j=1,2,3,4,5$ について以下の値が正の奇数となる.
    $$
    \min_{1\leq i\leq 4}(a_{i,j+1}-a_{i,j})
    $$

スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

代数問題2

natsuneko 自動ジャッジ 難易度:
7月前

6

問題文

実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています.
・ $a_0 = 0$
・ $0 \leq a_n \leq n+1$
・ $a_{2024} = 2025$

このとき,
$$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$
には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)

解答形式

答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

7月前

6

問題文

以下の条件1を満たす正整数列 $a_n\ (n \ge 1)$ を考える.

条件1:

$\cdot \ n\ge 1$ なる正整数 $n$ において, $a_{n+1}$ は $a_{n}$ 以下の正整数であって $a_{n}$ と互いに素なものの個数に等しい.

適切に $a_1$ を決めると以下の条件2が成立しました. このときの $a_1$ としてありうる値の個数を解答してください.

条件2:

$\cdot$ $a_1$ の任意の素因数は十進数表記で $1$ 桁である.

$\cdot$ 任意の $i,j \ge N$ なる整数 $(i,j)$ の組について, $a_i=a_j$ となる最小の $N$ が $N=13$ である.

解答形式

解答を非負整数で入力してください.

35日前

4

問題

$$f(xf(y)+y^2)=y^4(1+334x)$$

を素因数分解するとa^b*c^d...のようにあらわすことが出来るのでa+b+c+d+....を求めろ

解答形式

非負整数で答えろ

組み合わせ問題2

natsuneko 自動ジャッジ 難易度:
9月前

7

問題文

各文字が < か > であるような長さ $13$ の文字列 $S$ の内, 次の条件を満たす整数列 $a_1, a_2, \cdots a_{14}$ が一意に存在するようなものはいくつありますか?
・$S$ の $i$ 文字目が < ならば, $a_{i+1} = a_i + 1$
・$S$ の $i$ 文字目が > ならば, $a_{i+1} = a_i - 1$
・$1 \leq a_k \leq4 \ (k = 1, 2, \cdots, 14)$

解答形式

半角数字で解答して下さい.

座王001(C2)

shoko_math 自動ジャッジ 難易度:
7月前

4

問題文

$4\times9$ のマス目があり,$1$ つのマスの一辺の長さは $1$ とします.最も左下の点 $A$ から出発して,「線に沿って長さ $1$ だけ右または上または左に進む」という操作を繰り返して最も右上の点 $B$ にたどり着く経路のうち同じ線分を $2$ 回以上通過しないもの全てに対し,経路の長さの総和を求めてください.

解答形式

半角数字で解答してください.

自作問題C1

imabc 自動ジャッジ 難易度:
7月前

6

問題文

以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.

  • $a_0=a_{20000}=0$ .
  • $k=0,1,…,19999$ について $|a_{k+1}-a_k|=1$ .

また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.

  • 以下の条件を全て満たす $1001$ 個の整数の組 $(x_0,x_1,…,x_{1000})$ の個数.
    $\quad$ ・ $k=0,1,…1000$ について $x_k$ は $0$ 以上 $20000$ 以下の 偶数
    $\quad$ ・ $k=0,1,…999$ について $x_k\lt x_{k+1}$ .
    $\quad$ ・ $a_{x_{1000}}=0$ .

階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.

解答形式

答えを入力してください.

SMC100(問題75)

shoko_math 自動ジャッジ 難易度:
7月前

6

問題文

正 $7$ 角形 $ABCDEFG$ の外側に正 $6$ 角形 $ABPQRS$ を描きます.
このとき,$\angle{EGP}-\angle{GPR}$ の値は度数法で互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

組み合わせ問題1

natsuneko 自動ジャッジ 難易度:
11月前

5

問題文

赤玉 $20$ 個と青玉 $21$ 個の計 $41$ 個の玉を横一列に並べます. このとき, 左から $1$ 番目から $20$ 番目までの玉の中に含まれる赤玉の個数を $R$, 青玉の個数を $B$, 左から $22$ 番目から $41$ 番目までの玉の中に含まれる赤玉の個数を $r$, 青玉の個数を $b$ とします. 玉の並べ方は全部で $ \binom{41}{20}$ 通りありますが, その全ての並べ方に対する $Rb + Br$ の値の相加平均を求めて下さい.

解答形式

答えは互いに素な正整数 $a,b$ を用いて $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.

QMT002(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
7月前

11

問題文

十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします.
相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.

解答形式

半角数字で解答してください.

座王001(ボツ問題)

shoko_math 自動ジャッジ 難易度:
7月前

8

問題文

$\dfrac{1}{2},\dfrac{2}{3},\dfrac{3}{5},\dfrac{5}{8},\dfrac{8}{13},\dfrac{13}{21},\dfrac{21}{34},\dfrac{34}{55},\dfrac{55}{89}$ の中から( $2$ 個以上の)偶数個の異なる分数を選ぶ方法 $2^{8}-1$ 通りに対し,選んだ数の積を考えるとき,それらの総和は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ の値を解答してください.

解答形式

半角数字で解答してください.


問題文

鋭角三角形 $ABC$ に対し,重心と垂心をそれぞれ $G,H$ とし,直線 $GH$ と辺 $AB,AC$ との交点をそれぞれ $D,E$ とし,直線 $AH$ と辺 $BC$ の交点を $F$ としたところ,$DH:HG=4:3,BF:FC=3:7$ となりました.
${AD}^2:{AE}^2$ は互いに素な正の整数 $a,b$ を用いて $a:b$ と表されるので,$a+b$ の値を求めてください.

解答形式

半角数字で解答してください.

座王001(C1)

shoko_math 自動ジャッジ 難易度:
7月前

11

問題文

半径が $1,2,3,4,5$ の同心円に半径 $5$ の円の直径を $1$ 本付け加えて出来る図形を一筆書きで描く方法は何通りあるかを求めてください.
ただし,同じ道でも向きが異なる一筆書きは異なるものとして数えるものとします.

解答形式

半角数字で解答してください.