正整数の組 $(a_1,a_2,a_3,a_4,a_5,a_6)$ であって, 以下を共に満たすものはいくつありますか?
$i=1,2,3,4,5,6$ について $a_i$ は $210^{11}$ の約数.
$i=1,2,3,4,5$ について $\dfrac{a_{i+1}}{a_i}$ は整数であり, $\dfrac{a_{i+1}}{a_i}$ が $210^k$ の倍数となるような最大の整数 $k$ は奇数.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
十万,一万,千,百,十,一の位がそれぞれ $a,b,c,d,e,f$ であるような $6$ 桁の整数を $A$ とし,十万,一万,千,百,十,一の位がそれぞれ $e,f,a,b,c,d$ であるような $6$ 桁の整数を $B$ とします. 相異なる $1$ 桁の整数 $a,b,c,d,e,f$ が $e>a>0$ を満たしながら動くとき,$A$ と $B$ の最大公約数の最大値を求めてください.
半角数字で解答してください.
以下の整数 $2$ つの組からなる関数 $f(n,m)$ について, $f(30000,20000)$ を素数 $4999$ で割った余りを求めてください.
以下で定義される関数 $f$ について, $f(15000,25000)$ を素数 $4999$ で割った余りを求めてください. $$f(m,n)=\sum_{\ell=1}^{n}\sum_{\substack{a_1,\cdots,a_{\ell}\geq 1\\\\ a_1+\cdots +a_{\ell}=n}}(-1)^{\ell}\binom{m}{a_1}\cdots \binom{m}{a_{\ell}}$$ $$\quad$$
以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.
$$ f(n)=\sum_{m=1}^{n}\frac{(m+1)m^2n^{n-m-1}}{(n-m)!} $$
正の実数の組 $(x_1,x_2,x_3,x_4,x_5)$ に対し, $a_1=b_1=1 $ および $n=1,2,3,4,5$ について以下を満たす実数の組の列 $(a_1,b_1),(a_2,b_2),\dots,(a_6,b_6)$ を考えます. $$a_{n+1}=x_n a_n-n b_n,\quad b_{n+1}=x_n b_n$$ $b_6=100$ となるとき, $a_6$ として取りうる値には最大値が存在し, それを $M$ とします. $M$ の最小多項式 $P$ が存在するので, $P(500)$ を求めてください. ただし, $P$ の最高次の係数は $1$ とします.
$a_1+2a_2+3a_3=n$ を満たす非負整数の組 $(a_1,a_2,a_3)$ 全てについて, $$\frac{(a_1+a_2+a_3)!}{a_1!\times a_2!\times a_3!}$$ の総和を $f(n)$ とします. $f(n)\equiv 6 \pmod{12}$ を満たす最小の正整数 $n$ を求めてください.
各頂点の重みが $1$ または $2$ である根付き $2$ 分木で、各頂点の重みの総和が $n$ になるもののうち重みが $2$ である頂点の数が偶数個であるものの個数を $X_n$ ,奇数個であるものの個数を $Y_n$ とするとき $X_{100}-Y_{100}$ を求めてください。 ただし, 各頂点について右の辺と左の辺は区別するものとします.
以下の条件1を満たす正整数列 $a_n\ (n \ge 1)$ を考える.
条件1:
$\cdot \ n\ge 1$ なる正整数 $n$ において, $a_{n+1}$ は $a_{n}$ 以下の正整数であって $a_{n}$ と互いに素なものの個数に等しい.
適切に $a_1$ を決めると以下の条件2が成立しました. このときの $a_1$ としてありうる値の個数を解答してください.
条件2:
$\cdot$ $a_1$ の任意の素因数は十進数表記で $1$ 桁である.
$\cdot$ 任意の $i,j \ge N$ なる整数 $(i,j)$ の組について, $a_i=a_j$ となる最小の $N$ が $N=13$ である.
解答を非負整数で入力してください.
以下の条件を全て満たす $20001$ 個の整数の組 $(a_0,a_1,…,a_{20000})$ を 階段状な組 と定義します.
また,階段状な組 $A=(a_0,a_1,…,a_{20000})$ に対して スコア $S(A)$ を以下のように定めます.
階段状な組全てに対してスコア $S(A)$ の総和を求め,その値が $2$ で割り切れる最大の回数を求めてください.
答えを入力してください.
$$ f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!} $$
$AB≠AC$を満たす鋭角三角形$ABC$の内心を$I$とする。三角形$ABC$の内接円$\omega$は辺$BC,CA,AB$とそれぞれ点$D,E,F$で接している。$D$を通り$EF$に垂直な直線と$\omega$の交点のうち,$D$でない方を$G$とし,直線$AG$と$\omega$の交点のうち,$G$でない方を$H$とする。さらに,三角形$BHF$と三角形$CHE$の外接円の交点のうち,$H$でない方を$J$とし,直線$HJ$と直線$DI$の交点を$X$とすると以下が成立した。 $$ DX=\sqrt{1122} AH||DX DG=22 $$ このとき,$AX^{2}$は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので,$a+b$の値を解答して下さい。
半角数字で解答して下さい。
実数列 $\lbrace a_n \rbrace_{n = 1, 2, \cdots 2024}$ が以下を満たしています. ・ $a_0 = 0$ ・ $0 \leq a_n \leq n+1$ ・ $a_{2024} = 2025$
このとき, $$\sum_{n = 1}^{2024} \sqrt{{a_{n-1}}^2 + {a_{n}}^2 - a_{n-1}a_n - 2na_{n-1} + na_n + n^2}$$ には最小値が存在するため, 最小値を取るときの $a_{1000}$ の値を求めて下さい. ($a_{1000}$ の値は一意に定まります.)
答えは, 互いに素な正整数 $a, b$ によって $\cfrac{b}{a}$ と表されるため, $a+b$ の値を解答して下さい.