幾何α

katsuo_temple 自動ジャッジ 難易度: 数学 > 競技数学
2024年11月28日19:33 正解数: 3 / 解答数: 30 (正答率: 10%) ギブアップ不可

問題文

$AB≠AC$を満たす鋭角三角形$ABC$の内心を$I$とする。三角形$ABC$の内接円$\omega$は辺$BC,CA,AB$とそれぞれ点$D,E,F$で接している。$D$を通り$EF$に垂直な直線と$\omega$の交点のうち,$D$でない方を$G$とし,直線$AG$と$\omega$の交点のうち,$G$でない方を$H$とする。さらに,三角形$BHF$と三角形$CHE$の外接円の交点のうち,$H$でない方を$J$とし,直線$HJ$と直線$DI$の交点を$X$とすると以下が成立した。
$$
DX=\sqrt{1122} AH||DX DG=22
$$
このとき,$AX^{2}$は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので,$a+b$の値を解答して下さい。

解答形式

半角数字で解答して下さい。


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

bMC_F

bzuL 自動ジャッジ 難易度:
16月前

20

問題文

ある三角形の内心を中心とする半径 $2024$ の円が,その三角形の頂点のうちの一つと,その三角形の外心,垂心を通りました.この三角形の外接円の半径としてあり得る値の総和の整数部分を求めてください.

解答形式

半角数字で解答してください.

きゅうちきか 2

k4rc 自動ジャッジ 難易度:
24日前

4

問題文

$AB \lt AC$ なる鋭角三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とし,頂点 $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とします.また,三角形 $ABC$ の外接円と三角形 $AEF$ の外接円の交点のうち $A$ でない方を $K$ とします.ここで,線分 $EF$ 上の点 $S$ を $\angle SHO = 90^{\circ}$ となるように取ると,以下が成り立ちました.
$$ KS : SH : HD = 21 : 9 : 8 \sqrt{5} , \quad DK = 20 $$ このとき,線分 $BC$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので, $a+b$ の値を解答してください.

解答形式

正の整数を半角で解答.

幾何

sdzzz 自動ジャッジ 難易度:
14月前

8

問題文

$AB\lt AC$ なる鋭角三角形 $ABC$ があり,$BC$ の中点を $M$ とします.また,直線 $AB$ に $B$ で接し $M$ を通る円を $\Gamma_1$ ,直線 $AC$ に $C$ で接し $M$ を通る円を $\Gamma_2$ とし,直線 $AM$ と $\Gamma_1,\Gamma_2$ との交点のうち $M$ でない方をそれぞれ $D,E$ ,$DE$ の中点を $F$ ,$\Gamma_1$ と $\Gamma_2$ の交点を $G$ とした時,以下が成り立ちました.
$$
AM:MG=3:1,\quad AC=24,\quad CF=10
$$
この時,$BC^2$ の値を求めてください.

解答形式

例)半角数字で入力してください。

OMC没問7

natsuneko 自動ジャッジ 難易度:
8月前

7

問題文

$\sin \angle BAC = \dfrac{7}{8}$ を満たす鋭角三角形 $ABC$ について,$B$ から $AC$ に下ろした垂線の足を $D$,$C$ から $AB$ に下ろした垂線の足を $E$ とします.また,線分 $BC$ 上に点 $F$ を $\angle DEF = 90^\circ$ を満たすように取ったところ $BF=2, CF=6$ が成立しました.このとき,三角形 $ABC$ の面積の二乗を求めてください.ただし,答えは互いに素な正整数 $a,b$ を用いて $\dfrac{b}{a}$ と表されるので,$a+b$ の値を解答してください.

解答形式

半角整数値で解答してください.

16月前

13

問題文

$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。

条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。

解答形式

条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。

過去垢の問題(整数➀)

katsuo_temple 自動ジャッジ 難易度:
12月前

8

問題文

以下の式を満たす素数の組$(a,b,c,d)$について、$abcd$の総和を求めよ。
$$
4a²+b²+c²=d²
$$

解答形式

半角数字で解答してください。

400A

MARTH 自動ジャッジ 難易度:
28日前

6

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

$L^\infty$空間の双対

kikutaku 採点者ジャッジ 難易度:
4月前

1

問題文

「$L^\infty$空間の双対」

区間$[0,1]$上のルベーグ可測かつ本質的に有界な実数値関数の空間$L^\infty([0,1])$において、その双対空間$(L^\infty)^*$が$L^1([0,1])$と同型でないことを示せ

解答形式

例)証明してください。

H

kusu394 自動ジャッジ 難易度:
11月前

11

問題文

点 $O$ を中心とする半径 $1$ の円と,その円に内接する正 $169$ 角形 $A_1A_2\cdots A_{169}$ が与えられています.この正 $169$ 角形の頂点のうち,$A_{169}$ を除いた $168$ 頂点から $3$ 点を選ぶ方法は ${}_{168}\mathrm{C}_3$ 通り考えられますが,それらすべてについて選んだ $3$ 点を頂点とする三角形の垂心と $O$ の距離の $2$ 乗の総和を解答してください.(総和の $2$ 乗ではないことに注意してください.)

F

nmoon 自動ジャッジ 難易度:
39日前

7

問題文

$AB \lt AC$ を満たす鋭角三角形 $ABC$ の垂心を $H$,とする.直線 $BH, CH$ と三角形 $ABC$ の外接円との交点をそれぞれ $E (\not = B) , F (\not = C)$ とし,辺 $AB , AC$ と 線分 $EF$ との交点をそれぞれ $P , Q$ とする.直線 $AC$ に関して $P$ と対称な点を $R$,直線 $AB$ に関して $Q$ と対称な点を $S$ とし,三角形 $RSH$ の外心を $O$ とすると,以下が成立した.

$$ AH = 3 , BC = 4 , AO = 1$$

このとき,$AB$ の長さを求めてください.

解答形式

互いに素な正整数 $b , c$ および正整数 $a$ を用いて $\dfrac{\sqrt{a} - b}{c}$ と表されるので,$a + b + c$ を答えてください.

C

nmoon 自動ジャッジ 難易度:
12月前

15

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

算数オリンピック風味の幾何

miq_39 自動ジャッジ 難易度:
15月前

10

問題文

四角形 $ABCD$ があり,以下を満たしています:

$$
\angle B + \angle C = 120^{\circ} , \angle D = \angle B + 30^{\circ} , AB = CD = 7 , BC = 13 .
$$

このとき,辺 $AD$ の長さの $2$ 乗を解答してください.

解答形式

半角数字で解答してください.