WMC 類題

Weskdohn 自動ジャッジ 難易度: 数学 > 競技数学
2025年9月3日17:58 正解数: 1 / 解答数: 2 (正答率: 50%) ギブアップ数: 0

問題文

次の等式を満たすような $10000$ 以下の正整数の組 $(a,b,c)$ の個数を求めて下さい.

$$160a^2+153b^2+25c^2=24ab+96bc+72ac$$

解答形式

半角数字で入力して下さい.


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

Lucas

shippe 自動ジャッジ 難易度:
7時間前

1

問題文

₁₃₅C₃₀を7で割った余りを求めてください。

解答形式

半角数字で入力してください。

3月前

2

3辺の長さがそれぞれ自然数の三角形であり、3辺の長さの合計が1200になるという。このような条件を満たす三角形の個数を求めよ。

OMC没問1

Kta 自動ジャッジ 難易度:
5月前

2

問題文

$AB<AC$ で,線分 $AB,AC$ の長さが正整数値である三角形 $ABC$ について,半直線 $CB$ 上で線分 $BC$ 上でないところに点 $D$ ,半直線 $BC$ 上で線分 $BC$ 上でないところに点 $E$ をそれぞれ置く.また,三角形 $ADE$ の外接円と直線 $AB,AC$ との交点のうち,$A$ でないほうをそれぞれ $P,Q$ とする.$4$ 点 $B,P,Q,C$ が同一円周上にあり,$DB=9,BC=45,CE=5$ のとき,線分 $PQ$ の長さとしてあり得る値の総和は互いに素な正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表せるので,$a+b$ を解答してください.

解答形式

半角数字で入力してください。

連立方程式

smasher 自動ジャッジ 難易度:
2日前

2

問題文

以下の連立方程式を満たすような実数の組$(a,b,c,d)$の個数を求めよ。
$$
\begin{cases} ab^2c^3d^4=1 \\ a^4bc^2d^3=1\\a^3b^4cd^2=1\\a^2b^3c^4d=1\end{cases}
$$

解答形式

半角数字で個数を入力してください。

組み合わせ

suth 自動ジャッジ 難易度:
3月前

7

1から2pの2p個の異なる自然数を全て並べる時に隣り合う二つの積が常に偶数になる通りをSpとするとき、それがpで最大何回割れるか答えろ.
(ただしpは素数とする)

(半角の自然数が答え)

JMO2025yo-6?

simasima 自動ジャッジ 難易度:
6月前

7

問題文

正の実数からなる $2$ つの数列 $a_1,a_2,...$ と $b_1,b_2,...$ があり, 任意の整数 $n$ について以下を満たしている.
$$
(a_{n+1},b_{n+1})=\left(\frac{a_n}{2},b_n+\frac{a_n}{2}\right)または(a_{n+1},b_{n+1})=\left(a_n+\frac{b_n}{2},\frac{b_n}{2}\right)が成立する.
$$
$(a_1,b_1)$ が $(7,11)$ であるとき, $a_{100}$ としてあり得る値の中で $2025$ 番目に小さいものを求めよ.

解答形式

答えの値を $x$ としたとき, $2^{100}x$ の値を解答してください.
参考:$2^{100}=1267650600228229401496703205376$

因数分解

kikutaku 自動ジャッジ 難易度:
2月前

2

問題文

与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030

回答の仕方

因数分解された式のみ回答

自作3

tomorunn 自動ジャッジ 難易度:
3月前

4

問題文

モニターに0が表示されている。ここには3つのボタンがあり、
・ボタン$A$を押すとモニターの数字が1増える。
・ボタン$B$を押すとモニターの数字が2増える。
・ボタン$C$を押すとモニターの数字が3増える。
ボタン$A~C$をそれぞれ任意の回数押したとき、
最後に表示される数字が300以下の非負の3の倍数となるようなボタンの押し方の総数を求めよ。ただし、ボタンを押す順番は区別しない。

解答形式

例)半角数字で入力してください。

問題5

sulippa 自動ジャッジ 難易度:
53日前

4

問題文

$p, q, r $を互いに異なる3つの素数とする。

整数 $K = (qr)^{p-1} + (rp)^{q-1}+ (pq)^r$が、
$K ≡ p+q-1 (mod r)$
という条件を満たすとき、和 $p+q+r$ の最小値を求めよ。

解答形式

半角左詰め

E. 更に分割

G414xy 自動ジャッジ 難易度:
11月前

8

問題文

4x4のマス目のうち1つを、更に4x4に分割します。いくつかのマスで長方形を作るとき、何種類の長方形を作れますか。?
但し、同型でも場所が異なるなら違う種類と見なします。

解答形式

半角数字で入力してください。

第1問

sulippa 採点者ジャッジ 難易度:
3月前

3

問題文

3辺の長さがすべて整数である直角三角形を考える。その斜辺を$a$、直角を挟む2辺を$b, c$とする。

これらの辺の長さが、以下の関係式を満たしているという。
$$7a = 5(b+c)$$
この条件を満たす全ての直角三角形のうち、斜辺 $a$ が$10$の倍数であり、かつ $a < 200$ であるもの全てを考える。

それらの三角形の、面積の総和を求めよ。

解答形式

半角でスペースなし

OMC没問2

Kta 自動ジャッジ 難易度:
5月前

3

問題文

$\angle{A}=60^\circ,AB<AC$ なる三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とします.直線 $OH$ と直線 $AB$ との交点を $P$ としたとき,以下が成立しました.$$AP=8,AH=7$$このとき,三角形 $ABC$ の面積は互いに素な正整数 $a,c$ および平方因子を持たない正整数 $b$ を用いて $\displaystyle\frac{a\sqrt{b}}{c}$ と表せるので,$a+b+c$ を解答してください.

解答形式

半角数字で入力してください。