$n\;を自然数とする$ $n\;が15の倍数でないとき、n^{4}+14\; は素数でないことを示せ$
記述形式でお願いします 入力がめんどくさい方は、紙にでも書いて、twitterのDMに送ってください
2021年京都大学前期文系数学大問5が参考になると思います
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
勇者は座標平面上の原点 $(0,0)$ にいます. 勇者は点 $(6,6)$ まで $x$ 座標か $y$ 座標の少なくとも一方が整数である点のみを通って最短距離となるように移動します.
しかしながら,魔王の罠が直線 $\displaystyle{y=x+\frac{5}{2}}$ 上に張られていて,勇者は罠の張られている直線上を通るたびに $1$ ダメージずつ受けてしまいます.
勇者が最短距離で移動する道のりは ${}_{12}\mathrm{C}_6$ 通り考えられますが,それらすべてについて受けるダメージの平均値を求めてください.ただし,その平均値は互いに素な正整数 $a,b$ を用いて $\displaystyle{\frac{a}{b}}$ と書けるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$p=2^{10} - 3$とおき, 数列$a_n, b_n$を以下の式で定める. \begin{aligned} &a_0=0,\quad a_1 = 1,\quad a_{n+2} = 2a_{n+1} +2a_n & (n=0,1,\dots) \\ &b_0=0, \quad b_1 = 1,\quad b_{n+2} = 2b_{n+1} +(p+2)b_n & (n=0,1,\dots) \end{aligned}
(1) $a_n,b_n$をそれぞれ$n$で表せ. (2) $a_{1024}$を$p$で割った余りを求めよ. ただし, 整数$m$に対して$m^p\equiv m\pmod{p}$であることを用いてもよい.
(2) の解答を入力してください((1)は解答参照)
本問は大学への数学2025年2月号6番に掲載された自作問題です.
次の関数の極大値を求めよ。 y=|x^2-7x+10|+x
半角数字でお願いします。
半角で入力してください。 また、必要であればe,πを用いてください。
$x$ についての方程式 $xe^{2\sqrt{x}}=9(\log{3})^2$ の実数解を求めよ。
解をすべて答えてください。値の小さい順に1行目から入力してください。 なお,解答にあたって,特殊な数式は次のように入力してください。
対数:$\log_n{m}$ = \log_{n}{m}, $\log{m}$ = \log{m} 指数($\sqrt{m} = m^{\frac{1}{2}}$もすべて指数として入力してください):$n^{m}$ = n^{m} 分数:$\frac{a}{b}$ = \frac{a}{b}
半径1の円上に3点A,B,Cを取る 三角形ABCの面積の最大値を答えよ
答えのみ
関数列 $\{f_n\}_{n=0,1,\dots}$ が以下を満たします.
また, 実数列$\{A_n\}_{n=1,2,\dots}, \{B_n\}_{n=1,2,\dots}$を以下のように定義します.
$B_{24}$ の値を求めてください.
$x,y$を整数とします。次の式を満たす$x,y$の組$(x,y)$を全て求めてください。$$x^2y^2+3x^2y-12xy^2-5x^2-36xy+25y^2+60x+78y=123$$
$x$と$y$の積$xy$としてあり得るものの総和を半角で解答してください。
複素数の数列$\lbrace z_{n}\rbrace (n=0, 1, 2, ...)$は $$ z_{n+1}=\left\lvert\frac{z_{n}+\bar{z_{n}}}{2}\right\rvert z_{n} (n=0,1,2,...) $$ を満たしている。このとき,$\displaystyle \lim_{n\to \infty}z_{n}$が収束するような$z_{0}$の存在範囲を複素数平面上に図示せよ。
この存在範囲を数式で表現してください。最も簡単な1つの等式あるいは不等式を用いてください。
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8