全 1 件
感想を投稿してみましょう!この感想は正解した人だけにしか見えません!
この問題を解いた人はこんな問題も解いています
設問9
数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。
例)ひらがなで入力してください。
$a>0,b>0$ のとき、 $a^{4}+4a^{3}b+2a^{2}b^{2}+4ab^{3}+b^{4}\geq0$ を示せ
記述形式でお願いします 入力がめんどくさい方は、紙に書いて、twitterのDMに送ってください
設問1
数列 ${a_n}$ が $a_1 = 1, a_2 = 4$ および漸化式 $a_{n+2} - 4a_{n+1} + 4a_n = n \cdot 2^n$ ($n \ge 1$) を満たすとき、一般項 $a_n$ を求めよ。
半角1スペースで答えのみ
円Oが存在して、円O上に点A,B,C,Dをこの順に配置する。角ABD、角DCAそれぞれの二等分線の交点をE、角BAC、角CDBそれぞれの二等分線の交点をF、BDとACの交点をG、△ABG、△DCGそれぞれの内心をI,I’とする。 $$AB=\frac{19}{2},EF=11,△ABI=\frac{19}{2} $$ の時、四角形EIFI’の面積を求めよ。
求める値は互いに素な正整数a,bでa/bと表せるので、a+bを解答してください。
$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする $f(x)$ が最小値を取るときの $x$ の値を求めよ
解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください
∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。
解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。 a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。 また、1つの値の間は1つずつ空白を開けるようにしてください。 (例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、 2 3 11 5 6 7 8
整数 $x,y$ と数列 $z_k=|x-k|+|y-k|$ に対し,次の命題は $xy\leqq 7!$ の反例を何組もつか.
半角数字で入力してください.
nを一桁の自然数とする。xについての多項式、
∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt
について、x^6の係数を自然数にするようなnを求めなさい。
半角で一桁の数字を入力してください。
△ABCについて、Aから直線BCに下ろした垂足をD、点Bから直線CAに下ろした垂足をE、△ABCの垂心をHとしたとき以下が成立しました。$$AH=3,AE=2,AC=5$$△AHB:△HCDは互いに素な自然数a,bを用いてa:bと表せるのでa+bの値を解答してください。
半角数字を入力してください。
正角形 $ABCDEF$ について,辺 $AB,BC,DE, EF$ 上にそれぞれ点 $P,Q,R,S$ があり, $$AP =1,\ \ BQ =2,\ \ DR =3,\ \ ES =4$$ が成り立ちます.四角形 $PQRS$ の面積が $64\sqrt3$ のとき,正六角形の一辺の長さは正の整数 $a,b$ を用いて $a + \sqrt b$ と表せるので $a+b$ の値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.
$100$ 倍した整数部分を半角数字で入力してください.
※ 問題を一部修正しました.今後も手直しが続く可能性があります.
座標平面において $A(0,4000),B(-3000,0),C(3000,0)$ をとります.次の条件をすべて満たすような直線 $\ell$ として考えられるものは何通りありますか.