対角線同士が $E$ で交わっている凸四角形 $ABCD$ について, $$BA=9, AD=6, DC=7, \angle AED = \angle ADC = \angle DCB$$ が成り立っているとき,線分 $BC$ の長さは整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
下の図において, $\triangle ABC$ と $\triangle BDE$ は二等辺三角形です. さらに, $$\angle ABC=\angle BDE=90^\circ,\hspace{1pc} \angle EBC=60^\circ\\ BC=32, \hspace{1pc} DB=6\sqrt{2}$$ が成立します. 線分 $AE$ の中点を $M$ とするとき, 線分 $DM$ の長さを求めてください. ただし, $E$ は $\triangle ABC$ の内側にあります.
答えは正の整数値となるので, その整数値を半角で入力してください.
一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。
$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。
答えは整数となるので、半角で入力してください。
正の整数について定義され,$1$ 以上 $100$ 以下の整数値を取る関数 $f$ であり,任意の正の整数 $x,y$ について $$f(x)+f(y)=f(x^2y)+f(4x)$$ を満たすものすべてについて,$(f(1), f(2),…, f(100))$ としてありうる組が $N$ 個存在するとき,$N$ が $2$ で割り切れる回数を求めよ.
$\triangle ABC$において$AC$,$AB$の中点をそれぞれ$M$,$N$とし, 線分$BM$,$CN$上(端点を除く)にそれぞれ点$D$,$E$をとります. 直線$AD$,$AE$と線分$BC$の交点をそれぞれ$P$,$Q$としたとき,$$\frac{AP・PD}{PB}=MN-PC$$$$\frac{AQ・QE}{QC}=MN-QB$$が成立しました. $∠ADB=101°$,$∠BEN=62°$,$∠DCB=41°$のとき, $∠AED$の角度を度数法で解答してください.
半角数字で入力してください.
次の実数 $a,b,c$ に対し,つねに $|ax+by|\leqq |c|$ となる実数 $x,y$ の和の値域幅を求めよ.
半角数字で入力してください.
10の倍数でない正の整数 $n$ に対し, $f(n)$は, 十進法表示で $n$ を $1$ の位から逆の順番で読んで得られる正の整数として定めます. たとえば$f(123456789) = 987654321$です. $n+f(n)$が81の倍数となるような十進法で10桁の$n$の個数を解答してください.
本問は大学への数学2024年12月学コン3番に掲載されている自作問題です.
$(1)$ $4$ つの実数 $(10\pm\sqrt 2\pm 4\sqrt 3)^3+1$ の和と等しい整数の最大素因数を求めよ. $(2)$ 方程式 $(2x^2-x)(2x^2-7x+6)=7$ の実数解 $x$ に対する $x^5-\dfrac{1}{x^5}$ の値を求めよ.
$(1),(2)$ の和を半角数字で入力してください.
鋭角三三三角形 $ABCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC$ において,その外心を $O$,垂心を $H$,内接円を $\omega$ としたとき,$O,H$ はともに $\omega$ 上にあり,$\omega$ の半径は $1$ であった. この条件下で線分 $OH$ の長さとしてありうる値の総積を $xxxxxxxxxx$ とする.$xxxxxxxxxx$ の最小多項式を $P$ として,$|P()|$ の値を解答せよ.ただし,$xxxxxxxxxx$ が最小多項式をもつことが保証される.
半角数字を用いて解答せよ.解答すべき値が $$ でないことは保証される.
$n$を正の整数とします。連続する$10$個の整数の積$n(n+1)(n+2)(n+3)…(n+9)$が$2025^3$で割り切れるような$n$としてあり得る最小のものを求めてください。
$n$の値を半角で入力してください。
$1998^{2024}$の下$2$桁を求めよ。
1行目に半角整数で入力してください。
三角形 $T$ の一つの辺の長さは平方数で,残りの辺の長さは素数であるとする.また,$T$ の面積は整数で,外接円の直径は素数であるとする.$T$ の各辺の長さを求めよ.
$T$の3辺の長さの総和としてありうる値の総和を解答してください。(論証は解説を参照してください。)
2018年3月の大学への数学「読者と作るページ」に掲載された問題です。
緑色の正方形ABCDと、紫色の正方形EFGHがあり、それぞれ1辺6cmである。点Aと点E、点Bと点F、点Cと点G、点Dと点Hがそれぞれ重なるように正方形を重ねる。(緑色の正方形が上にある。) そして辺ABを3等分する点をとり、点Aに近い方を点Iとする。また辺EFを3等分する点をとり、点Fに近い方を点Jとする。 今、緑色の正方形のみを重心を中心として回転させ、点Iと点Jが重なったところで回転を止めた。このとき、上から見える紫色の部分の面積の合計はいくらか。
答えは◯cm^2となるので、◯の部分のみを答えてください。
2年前(小6)のときにルービックキューブを触りながら作った問題です。問題文が長ったらしくて読みにくいと思いますがご了承ください。ちなみにこの問題は当時scratchにも投稿しました。