tanは有理数か

suth 自動ジャッジ 難易度: 数学 > 高校数学
2025年5月28日14:58 正解数: 14 / 解答数: 16 (正答率: 87.5%) ギブアップ数: 0

tan1°は有理数か

はいorいいえで答えてね!

(解答が間違っていました。すみませんでした。修正しました.)


ヒント1

はいかいいえの1/2です


スポンサーリンク

解答提出

この問題は自動ジャッジの問題です。 解答形式が指定されていればそれにしたがって解答してください。

Discordでログイン Sign in with Google パスワードでログイン

ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。

または


おすすめ問題

この問題を解いた人はこんな問題も解いています

整数問題

kitotch 自動ジャッジ 難易度:
6月前

26

問題文

$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。

解答形式

半角数字で入力してください。

15月前

21

問題文

$\log_227$の整数部分を答えよ

Q3.素数

34tar0 自動ジャッジ 難易度:
15月前

20

問題文

素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。

解答形式

算用数字で解答してください。

PDC008.5 (D)

poinsettia 自動ジャッジ 難易度:
4月前

28

問題文

円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.

相加・相乗?①

smasher 自動ジャッジ 難易度:
2月前

12

問題文

$x$を実数とする。
$$x^2+1-\frac{1}{x^2+1}$$
の最小値を求めよ。

解答形式

最小値の値を半角数字で入力してください。

文化祭算数問題 5

sta_kun 自動ジャッジ 難易度:
15月前

6

問題文

正方形 $ABCD$ の辺 $CD$ 上に点 $E$ をとり,直線 $AE$ と $BC$ の交点を $F$,$AE$ と $BD$ の交点を $G$ とすると,$AG:EF=1:2$ が成立しました.このとき,角 $AFB$ は何度ですか?ただし,解答すべき値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

正方形と円の接線

kusu394 自動ジャッジ 難易度:
18月前

6

問題文

正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると,
$$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

追記
答えひらがなな訳ありませんでした、失礼しました

文化祭算数問題 6

sta_kun 自動ジャッジ 難易度:
15月前

7

問題文

角 $BAC=$ 角 $BCD=60°$ なる $AD\parallel BC$ の台形 $ABCD$ について,以下が成立しました.
$$ AC-AB=7 \mathrm{cm},\quad BC-CD=3 \mathrm{cm}$$
このとき $BC$ の長さは何 $\mathrm{cm}$ ですか?ただし,求める値は互いに素な正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので $a+b$ の値を解答してください.

解答形式

半角数字で解答してください.

文化祭算数問題 4

sta_kun 自動ジャッジ 難易度:
15月前

8

問題文

角 $A=90°$ ,角 $B=90°$ ,角 $C=120°$ なる四角形 $ABCD$ があります.辺 $AB$ 上に点 $E$,辺 $BC$ 上に点 $F$ をとると,$BF=9,FC=2,CD=8$ ,角 $EFD=120°$ が成り立ちました.$AE:EB$ を求めてください.ただし,求める比は互いに素な正整数 $a,b$ を用いて $a:b$ と表されるので $a+b$ の値を解答してください.

解答形式

半角数字で解答して下さい.

平方数

katsuo_temple 自動ジャッジ 難易度:
15月前

29

問題文

$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。

解答形式

$n$を小さい順に改行して半角で解答して下さい。
例)$n=3,7,9$の場合
3
7
9
と解答して下さい。

整数

kiriK 自動ジャッジ 難易度:
14月前

28

$
a!=b^{2}+2となる自然数a,整数bについて、
$
$
k(a,b)=a+bとおく。
$
$
k(a,b) の値として考えられるものは何個あるか。
$

PGC005 (E)

poinsettia 自動ジャッジ 難易度:
13月前

14

問題文

鋭角三角形 $ABC$ について,垂心を $H$,外心を $O$,直線 $CH$ と直線 $AB$ の交点を $F$,直線 $BC, AC$ について $F$ と対称な点をそれぞれ $X, Y$ とし,直線 $BX$ と直線 $AY$ の交点を $P$ とします.$\angle FOX=\angle AFP$ かつ $FH=1, HC=7$ が成り立つとき,円 $ABC$ の半径としてありうる値の二乗の総和は互いに素な正整数 $a, b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答してください.