tan1°は有理数か
はいorいいえで答えてね!
(解答が間違っていました。すみませんでした。修正しました.)
はいかいいえの1/2です
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
円に内接する四角形 $ABCD$ について,線分 $AC$ はその直径をなす.線分 $BD$ の中点を $M$ とすると $AM=AD, BD=12, CD=13$ が成立した.線分 $BC$ の長さの二乗を求めよ.
$\log_227$の整数部分を答えよ
三角形 $ABC$ について, 内心を $I$ , $A$ に関する傍心を $I_A$ , $\angle A$ の二等分線と $BC$ の交点を $D$ , 三角形 $ABC$ の外接円上の点であって, 点 $A$ を含まない方の弧 $BC$ の中点を $M$ とします.
$AM=27,MI_A=8$ のとき, $ID$ の長さを求めてください. ただし, 答えは有理数となるため, 既約分数 $a/b$ と書いたときの $a+b$ を答えてください.
正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると, $$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
追記 答えひらがなな訳ありませんでした、失礼しました
素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。
算用数字で解答してください。
$n^2-n+1$が平方数となるような非負整数$n$を全て求めよ。
$n$を小さい順に改行して半角で解答して下さい。 例)$n=3,7,9$の場合 3 7 9 と解答して下さい。
$p$ を素数,$n$ を自然数とする。$\log_{p}(n!)$ が有理数となるとき,その値を求めよ。
$\log_{p}(n!)$ の値をすべて求めてください。解答は小さい順に1行目から答えてください。
$\angle B=90^{\circ}$ なる直角三角形 $ABC$ について,線分 $AC$ の中点を $M$ とし,内部に $PM\parallel BC$ なるように点 $P$ を取り,三角形 $BPM$ の外接円と三角形 $ABC$ の外接円が再び交わる点を $X$ とする.$AP=5, PM=8, MA=10$ が成り立っているとき,線分 $PX$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので,$a+b$ を解答せよ.
各位の和が $14$ であるような $2$ 番目に小さい正の整数を求めよ.
内接四角形ABCDとその対角線の交点Mについて、図のような条件が与えられたとき、線分ACの長さを求めてください。
半角数字で解答してください。
問題文に誤りがあったため、修正しました。
頂角が $30$ 度または $90$ 度である二等辺三角形を図のように配置しました。このとき、ピンクで示した角の大きさは何度ですか?
ピンクの角 $=x$ 度です。$x$ に当てはまる $0$ 以上 $180$ 未満の値を半角数字で解答してください。