$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式 $x^n - (x-p)^n = p^n$ を考える。 $p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。
何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
自然数nを用いた素数2^n+5^(n+1)は存在するか。
証明する形式。
以下の等式を満たす $0$ 以上の整数 $x$ をすべて求めよ。解答する際は、解答形式を参照すること。
$$ \left\lfloor \sqrt{x} \, \right\rfloor + \left\lceil \sqrt{x} \, \right\rceil = x $$
ただし、実数 $x$ に対して $\lfloor x \rfloor$ は $x$ 以下の最大の整数、$\lceil x \rceil$ は $x$ 以上の最小の整数をいう。
答えを小さい順に並び替え、半角数字で一つずつ改行で区切って答えてください。 末尾に改行はあってもなくても構いませんが、各行にスペース等は入れないでください。
例)答えが $-1,8,9,10$ のとき
-1 8 9 10
と解答してください。
与式を因数分解せよ。x^6 - 41x^5 + 652x^4 - 5102x^3 + 20581x^2 - 40361x + 30030
因数分解された式のみ回答
以下の2次方程式 $$ x^{2}-2ax+b=0 ― (*) $$ について,自然数$n$を用いて以下の手順で係数$a,b$を定める。 $a:-n$以上$n$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 $b:-n$以上$n^{2}$以下の整数が書かれたカードの中から1枚引いて書かれていた数字。 カードを引く確率は同様に確からしいとし,できた2次方程式が実数解をもつ確率を$P(n)$とする。
$(3)$ $\lim_{n\to \infty}P(n)$を求めよ。
(4)は,自作場合の数・確率1-4につづく
2025/01/07追記 解説をアップデート,全員に対して公開に設定
分母分子の順に半角数字2つを空白区切りで回答 例)$\frac{1}{2}$と答えたいときは 2 1 と回答
この問題は(3)です。自作場合の数・確率1-2を解いてから解くことをお勧めします。
$n$を整数とする。$n^{8}-n^{2}$を割り切る最大の自然数を求めよ。
半角数字で入力してください。
$P(x)$ は整数係数の3次多項式である。 すべての整数$ n $に対して、$P(n)+1$ は常に立方数となるとする $P(0)=7$ および $P(1)=26$ が成立している。 このとき、$P(2)-P(-1)$ の値を求めよ。
半角スペースなし
$P(x)$ は整数係数の monic な (最高次の係数が1の) 3次多項式 であるとする。方程式 $P(x) = 0$ は、相異なる3つの整数解を持 つことが分かっている。 $P(0)=6$ $P(1)=4$ のとき、$P(4)$の値を求めよ。
半角でスペースなし
$n$を$2025$以下の正整数とする。 ある$n$について、$(n^{2}+n+1)(n^{3}+n^{2}-2n)$がもつ素因数$2$の個数を$d(n)$で表す。 $d(n)=1$となるような$n$の個数を求めよ。
nを素数、o,kを正の整数とする。
2ⁿ+5⁰=k²
をみたすn,o,kの組(n,o,k)をすべて求めよ。
答えとなるn,o,pの値の総和を回答してください
$\sqrt[abc]{a! + b! + c!}$が整数となるような正の整数の組$(a,b,c)$をすべて求めよ.
すべての組に対する $a+b+c$ の値の総和を解答してください。論証は解説を参照してください。
tan1°は有理数か
はいorいいえで答えてね!
(解答が間違っていました。すみませんでした。修正しました.)
素数 $p$ を用いて表される整数 $p-4, p^2-6, p^3-26$ が全て素数となるような $p$ の総和を求めよ。
算用数字で解答してください。