$f:{\mathbb R} \rightarrow {\mathbb R}$ は微分可能で、任意の $x,y \in {\mathbb R}$ に対して
$$
f(x+y)+f(x)f(y)=f(xy+1)
$$
を満たすとする。以下の空欄を埋めよ。
⑴ $f(0)=\fbox{アイ}$ または $f(0)=\fbox{ウ}$ が成り立つ。また、$f(0)=\fbox{アイ}$ のとき $f(1)=\fbox{エ}$ で、このとき $x \in {\mathbb R}$ を固定するごとに極限
$$
f'(x)=\lim_{h\to 0}\frac{f(x+h)-f(x)}{h}
$$
を考えるとロピタルの定理の仮定をすべて満たしていることがわかる。よって同定理を用いて $f$ が満たす微分方程式を導くことができる。
⑵ $f$ が満たす微分方程式を解くことで、$f$ をすべて決定できる。特に $f(23)$ がとり得る値は $\fbox{オ}$ 通りあり、それらの値の総和は $\fbox{カキク}$ である。
ア〜クには、0から9までの数字または「-」(マイナス)が入る。
⑴の答えとして、文字列「アイウエ」をすべて半角で1行目に入力せよ。
⑵の答えとして、文字列「オカキク」をすべて半角で2行目に入力せよ。
この問題を解いた人はこんな問題も解いています