200A

Nyarutann 自動ジャッジ 難易度: 数学 > 競技数学
2025年7月29日22:46 正解数: 7 / 解答数: 11 (正答率: 63.6%) ギブアップ数: 0

全 11 件

回答日時 問題 解答者 結果
2026年1月8日18:16 200A puratoku
正解
2025年9月6日22:27 200A sembri
正解
2025年9月6日22:24 200A sembri
不正解
2025年9月5日15:35 200A Not_here
正解
2025年8月1日8:01 200A udonoisi
正解
2025年8月1日0:14 200A ゲスト
正解
2025年7月30日9:29 200A GaLLium31
正解
2025年7月30日1:55 200A alpha
正解
2025年7月30日1:45 200A alpha
不正解
2025年7月30日1:42 200A alpha
不正解
2025年7月30日1:38 200A alpha
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

200C

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$1$ 以上 $5$ 以下の整数しか項に持たない全 $2025$ 項の数列があり,任意の連続する $3$ 項において以下を満たします.

  • $3$ 項の順番を並び替えることで等差数列になる.

例えば,$1, 1, 1, 1, \ldots$ や $1, 3, 5, 4, \ldots$ は条件を満たします.このような数列は $N$ 個あります.$N$ を素数 $677$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

京大作サーマスガチャ2025 - SR22

Kta 自動ジャッジ 難易度:
52日前

19

問題文

$n^2+78n-79$ を $100$ で割った余りが平方数とならないような最小の正整数 $n$ を求めよ.

解答形式

半角数字で入力してください(数字のみ)。

Bar Chart

aa36 自動ジャッジ 難易度:
5月前

12

問題文

$1$ 以上 $8$ 以下の数が $8$ 個あります.$8\times 8$ の白いマス目に,$8$ 個の数を棒グラフとして黒で書き込むことにしました.このとき,このマスから $2\times 2$ の正方形を切り取りとる方法のうち,黒マスがちょうど $2$ マスである方法の数を最初の $8$ 個の数のスコアと呼ぶことにします.$8$ 個の数の選び方 $8^{8}$ 通り全てに対してのスコアの総和を答えてください.

解答形式

末尾に「(通り)」などをつけず,非負整数で答えてください.

第9問

sulippa 採点者ジャッジ 難易度:
8月前

2

設問9

数列 ${a_n}$ ($a_n \in {0,1,2,3,4}$) が $a_1=1, a_2=1$ および漸化式 $a_{n+2} \equiv a_{n+1} + a_n \pmod{5}$ ($n \ge 1$) を満たすとする。$a_{2025}$ の値を求めよ。

解答形式

例)ひらがなで入力してください。

連立方程式 応用

reito 自動ジャッジ 難易度:
12日前

2

問題文

ab-3c-d^2 = e …①
3cd+d^2+e^2 = abd …②
a+8+2d = b …③
a+11+e = b+3 …④
を全て満たす自然数の組(a,b,c,d,e)のうち、a+b+c+d+eが最小となるようなものを求めよ。

解答形式

a+b+c+d+e の値を半角数字で

TMC001(D)

OooPi 自動ジャッジ 難易度:
3月前

9

正整数 $a,b$ であって以下が整数になるようなすべての組 $(a,b)$ について $ab$ の総和を求めてください
$$
\frac{(3ab+2a+4b-6)^2}{13(a^2b^2+a^2+4b^2+4)}
$$

2月前

12

問題文

$ $ $0$ 以上 $9$ 以下の整数 $a, b, c, d$ に対し,数列 $(x_0, x_1, ..., x_{1110})$ を次のように定めます:

  • $x_0 = a$ である.
  • $(x_0, x_1, ..., x_{10})$ は公差 $b$ の等差数列をなす.
  • $(x_{10}, x_{11}, ..., x_{110})$ は公差 $c$ の等差数列をなす.
  • $(x_{110}, x_{111}, ..., x_{1110})$ は公差 $d$ の等差数列をなす.

$x_{1110}$ のとり得る値の総和を求めて下さい.

解答形式

答えは非負整数値であることが保証されます.半角英数にし,答えとなる非負整数値を入力し解答して下さい.

整数問題 等式

reito 自動ジャッジ 難易度:
18日前

8

問題文

x,y,zを自然数とする。
xy+xz = x+y+z となるような(x,y,z)の組はいくつあるか。

解答形式

数字のみを記入すること。例:3組ある場合は 3

TMC001(B)

hya_math 自動ジャッジ 難易度:
3月前

15

関数$A(n),B(n)$を
$$
A(n)=(1\le x \le nを満たす1001と互いに素な整数xの個数)\\
B(n)=(n\le x \le 1001を満たす1001と互いに素な整数xの個数)
$$
と定めるとき,次の値を求めてください.
$$
\sum_{n=1}^{1000}\quad \frac{A(n)^2}{A(n)-B(n)}
$$

OMCE017E 原案(300くらい)

Nyarutann 自動ジャッジ 難易度:
5月前

5

問題文

$i=1, 2, \ldots, 999$ に対して,数 $i$ が書かれたカードがそれぞれ $1001$ 枚あり,同じ数が書かれたカードは区別しないものとします.これらを左右 $1$ 列に並べる方法であって,次の条件を満たすカード $X$ がちょうど $1$ 枚あるようなものが $N$ 通りあるものとします.

  • カード $X$ は一番右のカードではない

  • カード $X$ に書かれた数は,カード $X$ の右隣のカードに書かれた数より大きい

$N$ を $997$ で割った余りを求めてください.

解答形式

半角数字で解答してください.

OMCE011B?

uran 自動ジャッジ 難易度:
5月前

9

問題文

$a_{1},a_{2}, \cdots , a_{1500}$ は $1$ 以上 $3$ 以下の整数からなる数列であり,$a_{1501}=a_{1} =1,a_{1502}=a_{2}$ と定義すると全ての $1500$ 以下の正整数 $k$ で $a_{k+1} \neq a_{k}$ が成り立ち,かつ $1500$ 以下の正整数 $i$ のうち,

・$(a_{i},a_{i+1})=(1,3)$ となるものがちょうど $132$ 個
・$(a_{i},a_{i+1})=(2,1)$ となるものがちょうど $213$ 個
・$(a_{i},a_{i+1})=(3,2)$ となるものがちょうど $321$ 個
・$(a_{i},a_{i+1},a_{i+2})=(1,2,3)$ となるものがちょうど $123$ 個

ずつ存在します.この数列としてありうるものの数が $3$ で割れる最大の回数を求めてください.(電卓の使用を推奨します.)

解答形式

半角数字で解答してください.

TMC001(H)

OooPi 自動ジャッジ 難易度:
3月前

11

問題文

正整数列 $A_{n}$ を以下のように定義する
$$
1個の2 以上の正整数を要素に持ち,それらの総積が n に等しい
$$  この時 $A_{2^{100}}$ としてありうる数列すべてについて,その要素の
総和を $97$ で割った余りを答えてください。
  ただし,並び替えて一致するものも別々として数える。
例えば $A_{8}$ としてありうるものは $\lbrace8\rbrace,\lbrace2,4\rbrace, \lbrace4,2\rbrace, \lbrace2,2,2\rbrace$ でありその要素の総和は $8+2+4+4+2+2+2+2=26$ である。

解答形式

正整数で答えてください