p1

lamenta 自動ジャッジ 難易度: 数学 > 競技数学
2025年8月22日21:00 正解数: 21 / 解答数: 28 (正答率: 75%) ギブアップ数: 0
この問題はコンテスト「LGC short」の問題です。

全 28 件

回答日時 問題 解答者 結果
2025年9月20日19:54 p1 arararororo
正解
2025年9月5日9:59 p1 gaaa
正解
2025年9月5日9:59 p1 gaaa
不正解
2025年9月4日15:55 p1 Weskdohn
正解
2025年8月29日14:45 p1 ゲスト
正解
2025年8月24日19:05 p1 34tar0
正解
2025年8月24日12:30 p1 monicsequence_496
不正解
2025年8月23日3:44 p1 ゲスト
不正解
2025年8月23日0:50 p1 DY_math
正解
2025年8月23日0:45 p1 unknown
正解
2025年8月22日22:56 p1 ゲスト
正解
2025年8月22日22:56 p1 ゲスト
正解
2025年8月22日22:16 p1 kinonon
正解
2025年8月22日21:50 p1 syusyu
正解
2025年8月22日21:18 p1 kou0707
正解
2025年8月22日21:17 p1 kou0707
不正解
2025年8月22日21:17 p1 kiwi1729
正解
2025年8月22日21:16 p1 kou0707
不正解
2025年8月22日21:16 p1 kou0707
不正解
2025年8月22日21:13 p1 YoneSauce
正解
2025年8月22日21:07 p1 kmk_math
正解
2025年8月22日21:07 p1 pomodor_ap
正解
2025年8月22日21:07 p1 purin_neko1729
正解
2025年8月22日21:03 p1 MrKOTAKE
正解
2025年8月22日21:02 p1 miq_39
正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

p2

lamenta 自動ジャッジ 難易度:
45日前

14

問題文

$\quad$三角形 $ABC$ において,内心を $I$ ,角 $A$ 内の傍心を $I_A$ ,外心を $O$ とすると,直線 $II_A$ と直線 $IO$ は垂直に交わった.線分 $BC$ の中点を $M$ ,線分 $II_A$ と線分 $BC$ の交点を $K$ とし,三角形 $MKI_A$ の重心を $G$ とすると, $$KM=1,KG=3$$が成立した.このとき,線分 $BC$ の長さを求めよ.

解答形式

求める値の二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac ab$と表せるので, $a+b$ を半角数字で解答してください.

Sukosi Kantanna Geometry

Germanium32 自動ジャッジ 難易度:
45日前

29

問題文

三角形$ABC$の内心を$I$ , 外心を$O$とします。
$AI=5$ , $AO=6$ , $AB+AC:BC=5:2$が成り立っている時、$cos\angle OAI$の値を求めてください。

解答形式

求める値は互いに素な正整数$a,b$を用いて$\frac{a}{b}$と表せられるので、$a+b$の値を解答してください。

Someday

Hapican_ 自動ジャッジ 難易度:
45日前

25

問題文

鋭角三角形 $ABC$ があり、その垂心を $H$、直線 $AH$ と直線 $BC$ の交点を $D$ とすると、$2\angle BAD=\angle CAD,AC=11,DH=4$ であった。このとき、線分 $BC$ の長さを求めよ。

解答形式

求める長さの二乗、$BC^2$ は互いに素な自然数 $p,q$ を用いて $\frac{p}{q}$ と表せるので、$p+q$ の値を求めてください。

ABC(C)

atawaru 自動ジャッジ 難易度:
8日前

38

問題文

三角形 $ABC$ について,重心を $G$ ,線分 $AB$ の中点を $M$ ,線分 $AC$ の中点を $N$ とし,直線 $AG,MN$ の交点を $P$ としたとき,四角形 $BGPM$ の面積が $2025$ となりました.三角形 $ABC$ の面積を求めてください.

解答形式

答えは非負整数値となるので,それを半角で解答してください.

Sum of index

Germanium32 自動ジャッジ 難易度:
45日前

33

問題文

$n$を素因数分解したときの2の指数を$v_{2}(n)$と表します。
この時、$$v_2\left( \prod_{k=1}^{2025} (5^k - 1) \right)$$の値を求めてください。

解答形式

半角数字で入力してください。

Yaocho nyokki (Easy)

yu23578 自動ジャッジ 難易度:
45日前

29

問題文

$314$ 人の人が $\pi$ ナポゥ君の主催するたけのこニョッキ大会に参加します.ルールは次の通りです.

  • $i=1,2, \dotsc,314$ の順に $1$ 人 $1$ つの数 $i$ を叫んでいき,最後まで叫ぶことができたら成功である.もし $i$ を複数人が叫んでしまったり,だれも叫ばなかったりした場合は失敗である.

なかなか成功しないことに気づいた $\pi$ ナポゥ君は,次のように八百長をすることにしました.

  • はじめに $314$ 人それぞれに人$1,$ 人$2,$ ... 人$314$ と名付け,次に,人$i$ $(2 \le i \le 314)$ に $1$ 以上 $314$ 以下のいくつかの正整数を与える.そして, $i=1,2, \dotsc,314$ について以下を繰り返す.
    • $i=1$ ならば人$1$ が叫ぶ.そうでないなら,まだ叫んでいない人それぞれについて,与えられた数の集合を $S$ として,$S$ の中にもう叫んだ人$j$が含まれている場合,その人が数 $i$ を叫ぶ.

このたけのこニョッキが成功するような,$313$ 人に対する正整数の与え方の場合の数が $2$ で最大何回割れるかを解答してください.ただし, $314$ 人の名付け方は固定されているものとします.

解答形式

半角数字で解答してください.

問題3

Mid_math28 自動ジャッジ 難易度:
11日前

43

問題文

以下のように点 $O$ を中心とする円周上に三角形 $ABC$ が内接しています。この円の内部に点 $D$ を取ると、$AB=BC=AO=4,\angle BAD=90°$ が成り立ち、さらに三角形 $AOD$ の面積は $3\sqrt{3}$ でした。このときの線分 $CD$ の長さの $2$ 乗を求めてください。

解答形式

解答は正の整数値になるので、その値を半角数字で解答してください

ABC(A)

atawaru 自動ジャッジ 難易度:
8日前

39

問題文

$26$ 種類あるアルファベットの大文字からなる文字列に対し,次のようにして整数を対応付けます.

  • $k$ 文字の文字列を考える.$1\leq i\leq k$ なる整数 $i$ について $i$ 文字目が $a_i$ 番目のアルファベットの大文字であるとき,$a_1,a_2,\dots,a_k$ を続けて書く.

例えば,文字列 $CAT$ は,$C$ が $3$ 番目,$A$ が $1$ 番目,$T$ が $20$ 番目のアルファベットであるから $3120$ となります.このように,ある文字列に対応付けられる整数は一意に定まります.
いま,ある文字列に対応付く整数が $12012311821$ となりました.元の文字列として考えられるものはいくつありますか?

解答形式

答えは非負整数値となるので,それを半角で入力してください.

ABC(B)

atawaru 自動ジャッジ 難易度:
8日前

54

問題文

$13$ の倍数である $9$ 桁の正整数であって,上 $3$ 桁の整数も上 $6$ 桁の整数も $13$ の倍数であるようなものはいくつありますか?

解答形式

答えは非負整数値となるので,それを半角で解答してください.

B

nmoon 自動ジャッジ 難易度:
4日前

50

問題文

以下の式を満たす正の整数の組 $(m,n)$ 全てについて,$m + n$ の総和を求めてください.

$$(mn - 1)^2 + (m + n)^2 = 650$$

解答形式

正整数で答えてください.

C

nmoon 自動ジャッジ 難易度:
4日前

40

問題文

nmoon君は黒板に $60$ の正の約数を一つずつ全て書き込みます.そして,以下の操作をできなくなるまで行います.

  • 黒板に書かれた $2$ つの正の整数 $x,y$ について,黒板から $x,y$ を消し,$x,y$ の最大公約数と最小公倍数を黒板に書き込む.但し,このとき,操作前と操作後での黒板に書かれた数が,重複を許して全て一致することはないようにする.

全ての操作が終了したとき,黒板に書かれた数の総和としてあり得る値の総和を求めてください.

解答形式

正整数で答えてください.

PDC008.5 (C)

pomodor_ap 自動ジャッジ 難易度:
2月前

35

問題

$a,b$ を実数とする.$f(x)=x^4+ax^3+bx^2+ax+1$ は $f(1/2)\cdot f(1/3)=4$ を満たしている.$f(2)+f(3)$ としてありうる最小の正の整数値を求めよ.