Twitterログイン廃止のお知らせ (2023年2月3日8:45)
本サービスは、2/8をもちましてTwitterログインの提供を停止します。2/9以降、Twitterログインができなくなりますのでご注意ください。該当するユーザーは、至急対応をよろしくお願いいたします。 詳細はこちら→ https://pororocca.com/news/30

求長問題6

Kinmokusei 自動ジャッジ 難易度: 数学 > 中学数学
2020年9月8日19:11 正解数: 2 / 解答数: 2 (正答率: 100%) ギブアップ数: 0

解説

円の半径を$R$、赤い線分の長さを$L$とすると、
$R^2+L^2=X^2+Y^2$


おすすめ問題

この問題を解いた人はこんな問題も解いています

求値問題

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求角問題4

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

正六角形2つが図のように配置されています。赤い線分と青い線分の長さの比が1:4であるとき、緑で示した角Yの角度を求めてください。
ただし、図中"center"で示した点は正六角形の外心です。

解答形式

0~360までの半角数字で、「°」や「度」をつけずに解答してください。

求面積問題5

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

正方形が2つ、図のように配置されています。赤い線分の長さが20のとき、緑で示した四角形の面積を求めてください。
ただし、図中の青点はそれぞれの正方形の対角線の交点です。

解答形式

半角数字で解答してください。

面積の二乗の小数部分

zyogamaya 自動ジャッジ 難易度:
2年前

10

問題文

どの辺の長さも整数である$\triangle ABC$の面積を$S$とする。$S^2$の小数部分を求めよ。

解答形式

とりうるすべての小数部分を小さい順に都度改行、列挙してください。
例:
「0,1/2,1/3,1/6,1/√5」の場合、

0
0.5
0.'3'
0.1'6'
1/\sqrt{5}

求長問題4

Kinmokusei 自動ジャッジ 難易度:
2年前

4

問題文

正七角形2つが図のように配置されています。
赤色の線分の長さが7のとき、青色の線分の長さを求めてください。

解答形式

半角数字で解答してください。

[F] 執根号神

masorata 自動ジャッジ 難易度:
2年前

1

問題文

$4$ 点 $\mathrm{A,B,C,D}$ が $\mathrm{AB=BC=CD}=1,\mathrm{DA}=2$ を満たし、さらに線分 $\mathrm{BC}$ と線分 $\mathrm{DA}$ が点 $\mathrm{P}$ で交わっている。線分 $\mathrm{AP}$ の長さが最大となるとき、

$$
\mathrm{AC}=\frac{\sqrt{\fbox{アイ}-\sqrt{\fbox{ウエオ}\ }+\sqrt{\fbox{カキクケ}+\fbox{コサ} \sqrt{\fbox{シスセ}\ }\ }\ }}{\fbox{ソ}}
$$

である。ただし、$\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。

ヒント

必要であれば以下の事実を用いてよい。

・実数 $a,b,c$(ただし $a\neq-64$ )について、$\displaystyle p=\frac{b+c-a^2}{a+64},q=64p+a^2-b$ とおくと、$x$ についての恒等式

$$
1024x^4+64ax^3+bx^2+2cx+p^2-q=(32x^2+ax+p)^2-q(x-1)^2
$$

が成り立つ(これは、右辺を展開して係数比較することで簡単に確かめられる)。

解答形式

ア〜ソには、0から9までの数字または「-」(マイナス)が入る。
文字列「アイウエオカキクケコサシスセソ」を半角で1行目に入力せよ。
ただし、分数はそれ以上約分できない形で、かつ根号の中身が最小になるように答えよ。

問題

Kinmokusei 自動ジャッジ 難易度:
2年前

2

問題文

(2020.9.26 11:57追記)
解答形式に不備があったため、訂正致しました。

図の青、緑、赤の線分の長さを$X,Y,Z$、斜線部の面積を$S$とすると、次の式が成り立つ。
$$
\frac{[ア]}{S}=\frac{[イ]}{Z}\left(\frac{1}{X}+\frac{1}{Y}\right)
$$

なお、図の曲線は半円の弧である。

解答形式

$[ア],[イ]$にはともに自然数が入ります。その和を半角数字で解答してください。
ただし、その和が最小となるように解答してください。
例:$[ア]=4,[イ]=2$なら$6$ではなく(両辺を$2$で割ることにより)$3$と解答。

解の配置問題

zyogamaya 自動ジャッジ 難易度:
2年前

2

問題文

$x$に関する3次方程式$x^3+ax+b=0$($a,b$は実数)の3解の絶対値がすべて1以下となる$a,b$の必要十分条件が表す領域を$ab$平面に図示し、その面積を求めよ。

解答形式

面積の値のみを解答してください。答えは分数になるので/を用いて入力してください。
例:$\displaystyle\frac{5}{7}$→5/7

因数分解

zyogamaya 自動ジャッジ 難易度:
2年前

1

問題文

$x^4+y^4+z^4+w^4+(x^2+y^2+z^2+w^2)(xy+xz+xw+yz+yw+zw)+4xyzw$
を因数分解せよ。

解答形式

TeXで入力してください。項の順番に関しては辞書式順で入力してください。字数の高い因数を先に書いてください。
例1:
$(x^2+y^2+z^2+w^2)(x+y+z+w)$と答えるには
(x^2+y^2+z^2+w^2)(x+y+z+w)を入力してください。
例2:
$x,y,z,w$から重複せず3文字を選び、かけ合わせた項4つを辞書式順に並べると
$xyz,xyw,xzw,yzw$

求角問題6

Kinmokusei 自動ジャッジ 難易度:
2年前

3

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

Sandwich

halphy 自動ジャッジ 難易度:
2年前

8

問題文

ピザが1枚ずつ乗った $N\;(\geq 2)$ 枚の皿が横一列に並んでいます.ピザにはがあり,表には具がのっていて,裏にはのっていません.はじめ,すべての皿のピザは表が上になっています.これらのピザに対して,次の操作Xを考えます.

操作X:

  1. 隣り合う2枚の皿に着目し,左側の皿に乗っているピザをひっくり返し,右側の皿の一番上に重ねる.ピザが複数枚乗っている場合は,ピザを重ねたまままるごとひっくり返す.
  2. 左側の皿を取り除き,皿どうしのすき間を詰める.

この操作Xを$\;N-1\;$回繰り返すと,1枚の皿にピザの塔ができます.操作Xの $N-1$ 回の繰り返しをピザの調理ということにします.ピザの塔を構成するピザを,上から順に$\;P_i\; (i=1,\cdots, N)\;$とし,$P_i$ が表を上に向けているとき「表」,裏を上に向けているとき「裏」と書くことにすると,ピザの塔は「裏裏裏表」のように表すことができます.

$N=6$とします.「裏裏裏裏表表」というピザの塔ができるような調理は何通りあるか答えなさい.

解答形式

半角数字で入力してください.

求面積問題8

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

△ABCと点Pをとり、△ABP, △BCP, △CAPの重心をそれぞれ$G_1, G_2, G_3$とします。青で示した3つの三角形の面積の和が10のとき、$△G_1G_2G_3$(赤い三角形)の面積を求めてください。

解答形式

半角数字で解答してください。