次の式を満たす相異なる正の整数$p,q$を全て求めよ。
$$p^{p+q}−q^{p+q}=(pq)^p−(pq)^q$$
$p+q$の値をそれぞれの組で求め総和した値を半角で入力してください。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
$$\sum_{k=a}^{b} k! = p^q$$を満たす自然数$a$, $b(a \leq b)$、素数$p$, $q$の組$(a, b, p, q)$をすべて求めよ。
$a+b$の値をそれぞれの組で求め総和した値を半角で入力してください。
$$ a²+b²=c²,gcd(a,b,c)=1 $$ を満たす自然数a,b,cが存在するとき 任意の自然数tに対して $$ aₜ²+bₜ²=c²ᵗ,gcd(aₜ,bₜ)=1 $$ を満たす自然数aₜ,bₜが存在することを示せ
例)ひらがなで入力してください。
全ての自然数に対し、偶数の時は2で割り、奇数の時は1を足して2で割る操作を繰り返すと必ず1になることを証明せよ。
特に指定はなし。
ある数AとBがある。 (A<B)のとき次の式は「成り立つ」か成り立たないか。 成り立たない場合は正しい等号、不等号を書け。
$$ \frac{B}{A}-AB<(\frac{A}{B})^{2} $$
以下の問いに答えよ。
(1)$a,b,c,d$ はいずれも $0$ でない実数の定数で、 $ad-bc\neq 0$ を満たしている。実数 $\displaystyle x\neq -\frac{d}{c} $ に対して関数 $f(x)$ を
$$ \displaystyle f(x)=\frac{ax+b}{cx+d} $$
と定義すると、
$$ \frac{3\left(f''(x)\right)^2-2f'(x)f'''(x)}{\left(f'(x)\right)^2} $$
の値は $a,b,c,d$ や $x$ によらないある整数となる。その値を求めよ。
(2)実数 $x$ に対して関数 $g(x)$ を
$$ \displaystyle g(x)=\frac{e^{4x+816}-e^{-4x-816}} {e^{4x+817}+e^{-4x-817}} \ \ \ $$
$$ \displaystyle \frac{3\left(g''(x)\right)^2-2g'(x)g'''(x)}{\left(g'(x)\right)^2} $$
の値は $x$ によらないある整数となる。その値を求めよ。
0から9までの半角数字および-(マイナス)のうち、必要なものを用いて解答せよ。
(1)の答えを1行目に入力せよ。
(2)の答えを2行目に入力せよ。
たとえば、(1)に $816$、(2)に $-817$ と回答したいときは、
816 -817
と入力せよ。
半径 $1000$ の円の形をした平坦な地形の島がある。この島を訪れたトレジャーハンターのアリスは、この島のある $1$ 点 $\mathrm{T}$ の真下に宝が埋まっていることは知っているが、$\mathrm{T}$ の位置は知らない。アリスは、自分のいる地点と $\mathrm{T}$ との距離を正確に測る探知機を使って $\mathrm{T}$ にたどり着こうとしている。
はじめ、アリスは島の中心点 $\mathrm{A_0}$ にいる。この後、アリスはターン制で行動を繰り返す。$n=1,2,\ldots$ に対し、$n-1$ ターン目の行動が終わった後のアリスの位置を $\mathrm{A_{n-1}}$ とする。$n$ ターン目でアリスは以下の行動をとる:
$n$ ターン目の行動: アリスは、今いる地点 $\mathrm{A_{n-1}}$ からちょうど距離 $1$ だけ離れた点 $\mathrm{A_{n}}$ に移動する。その後、探知機を使って線分 $\mathrm{TA}_n$ の長さ $d_n$ を正確に測る。
さて、あるターンで $d_n=0$ となった時、アリスは今いる地点の真下を掘り起こして宝を見つける。$\mathrm{T}$ の位置にかかわらず、アリスがうまく行動すれば $N$ ターン目で確実に宝を見つけることができるような正の整数 $N$ の最小値を求めよ。
半角数字のみで1行目に入力せよ。
$\pi$ が $\dfrac{1000\pi}{1001}\risingdotseq 3.13845\cdots$ よりも大きいことを示せ
正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました. $$ f(a)+f(b)+f(c)=f(abc)+2 $$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.
半角数字で解答してください.
任意の自然数$i$に対して、$z_i$は$z_i^6=1$を満たす複素数である。複素数$w$について、$w= \sum_{k=1}^{100}z_k$とするとき、$w$がとりうる値の個数を求めよ。
自然数(半角入力)のみで答えてください。
実数 $a,b,c,d$ が $\dfrac{a^2+b^2+2bc+2ca}{c^2+2ab}=\dfrac{b^2+c^2+2ca+2ab}{a^2+2bc}=\dfrac{c^2+a^2+2ab+2bc}{b^2+2ca}=d$ を満たすとき,$d$ の値として考えられるものの総和を求めてください.
各桁の数字が $3,7,5,6,4$ のいずれかであるような正の整数をエグい数と呼ぶことにする。$5$ 桁のエグい数であって、$5^5$ の倍数であるものを $1$ つ求めよ。
なお、本問では $10$ 進法を用いている。
半角数字のみで1行目に入力せよ。 $10$ 進法で答えること。
nを素数、o,kを正の整数とする。
2ⁿ+5⁰=k²
をみたすn,o,kの組(n,o,k)をすべて求めよ。
答えとなるn,o,pの値の総和を回答してください