$4999$ 以下の素数の組 $(p,q,r,s)$ が以下の式を満たしているとき,積 $pqrs$ が取りうる値の総和を解答してください. $$ pqr+pqs-p^2 = q^2+2 $$
正の整数を半角で解答.
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
対角線同士が $E$ で交わっている凸四角形 $ABCD$ について, $$BA=9, AD=6, DC=7, \angle AED = \angle ADC = \angle DCB$$ が成り立っているとき,線分 $BC$ の長さは整数 $a,b$ を用いて $a+\sqrt b$ と表せるので,$a+b$ を解答せよ.
三角形$ABC$があり,また点$C$を通る点$B$で$AB$に接する円$O$がある.円$O$上でありかつ 三角形$ABC$の内部に$BD=CD$となる点$D$をとり$AC$と円$O$の交点のうち$C$でないものを$E$とおくと $AB=15,BC=10,DE=16$であった.このとき$AC$の長さの$2$乗は互いに素な正整数$a,b$によって$\frac{a}{b} $と表されるので$a+b$の値を解答してください. ただし点$A,C,E$は$ACE$の順に一直線上に並んでいるものとする.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形 $ABC$ において,$A,B,C$ から対辺に下ろした垂線の足を $D,E,F$ とし,三角形 $ABC$ の垂心を $H$ としたところ,$DE=9,DF=8,DH=7$ となりました. このとき,$AH$ の長さは互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表されるので,$a+b$ の値を解答してください.
半角数字で解答してください.
$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.
$$ AB = 12, \ \ BC= 20 $$
のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。
答えは正の整数値となるので, その整数値を半角で入力してください.
半円と平行四辺形が図のように配置されています。赤い三角形の面積が3のとき、青い線分の長さを求めてください。 ※平行四辺形の一辺と半円は接する。
$$x=\fbox{ア}\sqrt{\fbox{イウ}-\fbox エ\sqrt{\fbox オ}}$$と表せるので、文字列 アイウエオ を解答してください。ただし、$\fbox ア~\fbox オ$には0以上9以下の整数が入ります。
正整数値に対して定義され正整数値をとる関数 $f(x)$ は,任意の正整数 $a, b, c$ において,以下を満たしました. $$ f(a)+f(b)+f(c)=f(abc)+2 $$また,$f(15)=15$ を満たすとき,$f(2025)$ としてあり得る値の総和を求めてください.
次の不等式を満たす最大の自然数$n$を求めてください。 $$ 2^{n+1}-10\sum_{k=1}^n \lfloor \frac{2^{k-1}}{5} \rfloor \le 20210220 $$ただし、$\lfloor x\rfloor$は$x$を超えない最大の整数を表します。
半角数字で解答してください。
相異なる正の実数 $a,b,c$ が $ab^2(1-b)=bc^2(1-c)=ca^2(1-a)$ を満たして動くとき、$(1-a)(1-b)(1-c)$ の最大値は
$$ \displaystyle \frac{\fbox{アイウ}+\fbox{エオ}\sqrt{\fbox{カ}}}{\fbox{キクケ}} $$
である。
ア〜ケには、0から9までの数字、または-(マイナス)が入る。文字列「アイウエオカキクケ」を全て半角で1行目に入力せよ。ただし、それ以上約分できない形で、かつ根号の中身が最小になるように答えよ。
しずかちゃんがシャワーを浴びようとしてお湯を出し始めた。はじめのお湯の温度は $35$℃で、お湯を出し始めてから $n$ 秒後のお湯の温度は $T_n$℃であるとする。
しずかちゃんは非常に温度に敏感で、シャワーの温度をちょうど $40$℃に設定しないと落ち着かない。そこで、しずかちゃんはお湯を出し始めてから $n=1,2,3...$ 秒後に、シャワーの温度がちょうど $a(40-T_n)$℃だけ上がるように温度調節レバーを操作する。ここで、$a$ は正の定数である。なお、$T_n>40$ のときは $a(T_n-40)$℃だけ温度が「下がる」ように操作するものとする。
$N$ を自然数の定数として、温度調節レバーの操作がお湯の温度に反映されるまでちょうど $N$ 秒かかる。すなわち、しずかちゃんがお湯を出し始めてから $n$ 秒後に温度調節レバーを操作したとき、 はじめから $n+N$ 秒後と $n+N+1$ 秒後の間にシャワーの温度が $a(40-T_n)$℃だけ上昇する。
さて、$\displaystyle \lim_{n \to \infty} T_n=40$ であれば、しずかちゃんは十分な時間が経つと快適にシャワーを浴びることができる。$a$ が十分小さければ、すなわち温度をできるだけ少しづつ上げていけば、直感的にはこのことは可能である。では、具体的には $a$ はどれほど小さい必要があるのだろうか。そこで、$\displaystyle \lim_{n \to \infty} T_n=40$ が成り立たないような $a$ の最小値を $a_c$ とおく。以下の空欄を埋めよ。
(1) $N=1$ のとき、$a_c=\fbox{ア}$ である。
(2) $N=2$ のとき、$\displaystyle a_c=\frac{\fbox{イウ}+\sqrt{\fbox{エ}}}{\fbox{オ}}$ である。
ア〜オには、0から9までの数字または「-」(マイナス)が入る。 (1)の答えとして「ア」にあてはまる数を半角で1行目に入力せよ。 (2)の答えとして、文字列「イウエオ」を半角で2行目に入力せよ。
正方形 $ABCD$ の辺 $BC$ 上に点 $E$ をとると, $$BE=7,\ \ \ \ CE=5$$が成り立ちます.$E$ を中心とした半径 $7$ の円を $O$ とし,正方形 $ABCD$ の内部かつ円 $O$ の周上の点 $F$ をとると直線 $DF$ は円 $O$ の接線となりました.このとき,線分 $CF$ の長さは正整数 $a,b$ と素数 $c$ を用いて $\displaystyle{\frac{a+\sqrt{b}}{c}}$ と書けるので $a+b+c$ の値を解答してください.
追記 答えひらがなな訳ありませんでした、失礼しました
共通部分を持たない2円と、その共通接線があります。図中の同じ色で示した線分の長さが等しいとき、2円の半径比を求めてください。 ※図は正確でないことに注意
大円の半径を$R_1$、小円の半径を$R_2$とすると、$R_1:R_2=\fbox ア:\fbox イ$です。文字列 アイ を解答してください。 例:$R_1:R_2=5:2$ であれば 52 と解答
2つの正方形が図のように配置されています。赤と青の面積の差が$11$のとき、紫と橙の面積の差を求めてください。