PDC011 (F)

poinsettia 自動ジャッジ 難易度: 数学
2025年10月29日21:00 正解数: 5 / 解答数: 11 (正答率: 45.5%) ギブアップ数: 1
この問題はコンテスト「PDC011」の問題です。

全 11 件

回答日時 問題 解答者 結果
2025年10月30日19:09 PDC011 (F) Ilikekaf
正解
2025年10月30日19:01 PDC011 (F) Ilikekaf
不正解
2025年10月30日18:55 PDC011 (F) Ilikekaf
不正解
2025年10月30日18:45 PDC011 (F) Ilikekaf
不正解
2025年10月29日23:34 PDC011 (F) noppi_kun
不正解
2025年10月29日22:06 PDC011 (F) wasab1
正解
2025年10月29日22:00 PDC011 (F) Holalala
正解
2025年10月29日21:57 PDC011 (F) jayjay
正解
2025年10月29日21:56 PDC011 (F) jayjay
不正解
2025年10月29日21:08 PDC011 (F) ZIRU
正解
2025年10月29日21:07 PDC011 (F) ZIRU
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

PDC011 (D)

poinsettia 自動ジャッジ 難易度:
1日前

29

問題文

$900$ 個の白丸が円形に並んでいる.ここから次の条件を満たすようにいくつかの丸 ($1$ つ以上) を黒く塗る方法は何通りあるか?

  • 黒く塗られた丸がランダムで一つ選ばれ,また $1$ 以上 $450$ 以下の整数 $k$ がランダムで与えられる.この時,これらがどのように選ばれても,選ばれた丸から時計回りと反時計回りに $k$ 個先の丸の少なくとも一方は黒く塗られている.

400A

MARTH 自動ジャッジ 難易度:
16日前

5

以下で定義される関数 $f(n)$ について, $f(1000)$ を互いに素な正整数 $a,b$ を用いて, $\dfrac{a}{b}$ と表したとき, $ab$ が$2$ で割り切れる最大の回数を求めてください.

$$
f(n)=\sum_{m=1}^{n}\frac{mn^{n-m-1}}{(n-m)!}
$$

E

kusu394 自動ジャッジ 難易度:
11月前

29

問題文

holoXのずのーである『博衣こより』はとある実験に成功し、同じholoXのメンバーである『ラプラス・ダークネス』『鷹嶺ルイ』『沙花叉クロヱ』『風真いろは』と自分自身をそれぞれ $6$ 人ずつに分身させてしまいました.
分身させた計 $30$ 人のうち $6$ 人を選び,下記の条件に沿って左右 $1$ 列に並べる方法は何通りありますか.

  • 『博衣こより』と『沙花叉クロヱ』は隣り合ってはならない.(こよクロ(『博衣こより』と『沙花叉クロヱ』のユニット)は解散しているため)
  • 『ラプラス・ダークネス』の左右のどちらか隣に『鷹嶺ルイ』がいないといけない(『ラプラス・ダークネス』は『鷹嶺ルイ』が近くにいないと不安になってしまうため.しかし,『鷹嶺ルイ』の隣に『ラプラス・ダークネス』がいなくても良い.)

解答形式

半角整数で入力してください.

PDC010 (E)

poinsettia 自動ジャッジ 難易度:
6日前

17

問題文

$3\times 1000$ の $2$ つのマス目 $A,B$ があり,これらの $6000$ マスのうち $0$ 個以上に印をつける.印の付け方であり,以下を満たす方法は $N$ 通り存在する.$N$ が $2$ で割り切れる回数を解答せよ.

  • $A$ または $B$ から取り出せる $2\times 2$ の部分マス目(連結成分)であり,印のついたマスの個数が $1$ または $3$ であるようなものを $M$ とすると,$M\geq 1998$ である.

きゅうちきか 2

k4rc 自動ジャッジ 難易度:
12日前

1

問題文

$AB \lt AC$ なる鋭角三角形 $ABC$ について,その外心を $O$ ,垂心を $H$ とし,頂点 $A,B,C$ から対辺に下ろした垂線の足をそれぞれ $D,E,F$ とします.また,三角形 $ABC$ の外接円と三角形 $AEF$ の外接円の交点のうち $A$ でない方を $K$ とします.ここで,線分 $EF$ 上の点 $S$ を $\angle SHO = 90^{\circ}$ となるように取ると,以下が成り立ちました.
$$ KS : SH : HD = 21 : 9 : 8 \sqrt{5} , \quad DK = 20 $$ このとき,線分 $BC$ の長さの二乗は互いに素な正の整数 $a,b$ を用いて $\dfrac{a}{b}$ と表せるので, $a+b$ の値を解答してください.

解答形式

正の整数を半角で解答.

800A

MARTH 自動ジャッジ 難易度:
6月前

16

正の整数 $m$ に対し,
$$f(m)=\sum_{k=0}^m(k+1)k2^k\frac{(2m-k-1)!}{(m-k)!}$$
と置きます.このとき, $f(5000)$ を素数 $5003$ で割った余りを求めてください.

Final 1

seven_sevens 採点者ジャッジ 難易度:
9月前

2

$$\int^1_0\int^{\sqrt{1-z^2}}_0\sqrt{1-z^2-y^2}dydz$$

Final 2

seven_sevens 採点者ジャッジ 難易度:
9月前

2

数列${a_n}$を以下のように定義する。
$$
\begin{eqnarray}
a_1&=&\int_0^1dx\\
a_{n+1}&=&\int_0^{a_n+1}x^{a_n}dx
\end{eqnarray}
$$
このとき、$\log_{10}(a_5)$の値を求めよ。

Final 3

seven_sevens 採点者ジャッジ 難易度:
9月前

2

次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表

Final 0

7777777 採点者ジャッジ 難易度:
9月前

2

この問題には、必ず最初に解答をしてください。
解答はどんなものでも構いません。もし迷った際は、以下の文章をコピーペーストしても構いません。
「生命、宇宙、そして万物についての究極の疑問の答えは42です」
最初に解答されなかった場合、以降の解答は無効となります。

Test 2

seven_sevens 採点者ジャッジ 難易度:
15月前

2

この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$2+2=?$$

Final 4

seven_sevens 採点者ジャッジ 難易度:
9月前

3

$(x,y)$を$x^2+y^2=1,x\geqq0,y\geqq0$を満たすようにとる。
$z=(x,y)\cdot(\frac1{\sqrt2},\frac1{\sqrt2})$としたとき、以下の値を求めよ。
$$\int_0^1zdx$$