実数$x,y$が不等式$x^2+y^2=1$をみたすとき、$x+y$の最大値を求めよ。
Discordでログイン パスワードでログイン
この問題はコンテストの問題です。解答するにはログインが必要です。
この問題を解いた人はこんな問題も解いています
次の定積分を求めよ。$$\int_{0}^{\frac{π}{2}}{\frac{dx}{1+tanx}}\quad$$
点の定義は次をチェック(https://pororocca.com/problem/2047/) 円$X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.
答えは互いに素な整数$a,b,c,d$を用いて,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但し$d>0$とします. なお,半角で打ち込むこと.
次の空欄$(ア)~(オ)$に当てはまる数字をそれぞれ答えよ。 数列{$a_{n}$}を次のように定める。 $$a_1=a_2=1,a_{n+2}-a_{n+1}+a_n=0 (nは自然数)$$この数列の一般項は
$a_n=\frac{(ア)}{\sqrt{(イ)}}$$sin\frac{nπ}{(ウ)}$ である。 また、$a_{2025}=(エ)$であり、$$\sum_{n=1}^{2025}{a_n}=(オ)\quad$$である。
次の空欄$(ア)~(エ)$に当てはまる数字をそれぞれ答えよ。 関数$f(x)$を$$f(x)=\frac{log(x)}{x}$$と定める。 $f(x)$は、$x=(ア)$で、極大値$\frac{(イ)}{e}$をとる。 また、$$\int_1^e{f(x)dx}\quad$$ の値は$\frac{(ウ)}{(エ)}$である。
ただし、対数は自然対数を表し、$e$は自然対数の底とする。
$t$が実数全体を動くとする。 このとき、点$$(\frac{1}{1+t^2},\frac{t}{1+t^2})$$はどのような図形を描くか答えよ。
答えの図形が正確に分かるようにお答えください。
半径$15$の円$ω$について,ある直径$AB$を考える. $AB$を三等分する点を順に$P,Q$とし(つまり$A・P・Q・B$の順に点が並ぶ), $AP$を直径とする円$X$を描く. また,$AB$に直交する直径$CD$について,同様に$R,S$を取り($C・R・S・D$の順),$CR$を直径とする円$X'$を描く. ここで,円$X$の接線の内,$CD$と平行で且つ円$X'$側のものを直線$F$,円$X'$の接線の内,$AB$と平行で且つ円$X$側のものを直線$G$とする. 直線$F,G,$円$ω$に接する円$T$として考えられるものは$2$つあるが,そのうち小さい方の半径を求めよ.
答えは整数$n,m,l$で$n√m+l$と書ける. $n+m+l$を求めて下さい. 尚,マイナス含め,全て半角で打ち込むこと.
続編(normal):https://pororocca.com/problem/2048/
aiueaiuの7字を並べるとき少なくとも1つの「ai」が「ue」よりも前にあるのは何通りか。
例)半角英数字。
以下の値を求めてください。 $$ \sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor $$
答えは整数値になるので、半角数字で入力してください。
$θ$を媒介変数とし、次のように表される曲線$C$を考える。$$\begin{cases}x=θ-sinθ\\y=1-cosθ\end{cases}$$ $0≦θ≦2π$として、この曲線$C$の長さ$L$を求めよ。
例)(1)はb√c/aとなるので、a,b,cの値をそれぞれ1,2,3行目に書いてください ⑵はdπ/eとなるので、d,eの値を4,5行目に書いてください
$n ≧2$を整数、$p $を素数とする。正の整数 $x$ についての方程式 $x^n - (x-p)^n = p^n$ を考える。 $p$ が奇素数であり、$p$が $x$ を割り切らないとき、この方程式は解を持たないことを示せ。
何の定理を使用したかを明確にされた上で、数式を出来るだけ省いてもらった形の簡単な証明で構いません
xy平面上にて、中心が直線y=3x上にあり、直線2x+y=0に接し、点(2,1)を通る円の方程式は(x-a)^2+(x-b)^2=r^2である。 a、b、r^2の値をそれぞれ求めよ。
a○b△R□ ○△□のところに答えの数字を入力してください。 r^2はRと表記してください。 a=2 b=3 r^2=4の場合 a2b3R4と入力