次の連立方程式において、x,yの値を求めよ ただし、x>yとする 4x²+4x-4y²=-1 x²+6x+6y=61
すべて半角でx=◯,y=◯と入力 分数は分子/分母と入力 例 x=1,y=-1/3
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
ある箱Hに赤玉5個、白玉4個入っている、Aさんが白たまを引くとき、Bさんは青玉を白玉の代わりに入れる、 同様に赤玉を引いたとき、Bさんは緑玉を代わりに入れる、その後Gさんが箱から玉を取り出す、この時青玉を取り出す確率は幾つであるか
回答は 該当/全体的 で記入してください
$p,q$を素数とする。 $pq(p+q)$が平方数となるものをすべて求めよ。
ありうる組$(p,q)$について$pq$の総和を半角数字で入力してください。
四角形$ABCD$があり、次の条件を満たします。
$∠A=∠B=∠C, ∠D=135°, BC=4\sqrt{6}, CD=8$
この四角形の面積$S$は$a + \sqrt{b}$の形で表されるので、$a + b$を解答してください。
半角数字で答えをそのまま入力。
問題に不備等あればtwitterのDMなどで気軽にお願いします。 Tex初めて使いました。 問題思いつくのは簡単なんですけど、解説は未だに上手く書けませんね…
初めのブロックの体積をxとし、それを二等分する作業一回をnとする。 例:1→2→4→8 のように二等分する。この時、n =3であり、最後のブロックの数は8である。また全体を通して7回二等分している。この時、次の問いに答えよ。
(1)最後のブロックの数が4194304の時、nの値を求めよ (2)n =12であり、最後のブロック1つの体積が10であるとき、xの値を求めよ (3)全体を通して二等分した回数をnを用いて表せ (4)今まで二等分されたブロックの数の和をnを用いて表せ 例:n=1の時、ブロックの和は3、n=2の時、ブロックの和は7、n=3の時、ブロックの和は15
(1)◯◯ (2)◯◯ (3)◯◯ のように行を変えて答えなさい。 n=、x=などは必要ありません。 累乗の指数の項が複数ある場合は()をつけなさい 例:3^(x+3)、4^3 マイナスはハイフンで答えなさい。→-
三角形$ABC$の内心を$I$とし直線$AI$と三角形$ABC$の外接円の交点のうち$A$でないものを$M$, 直線$AM$と$BC$の交点を$D$,$A$から $BC$への垂線の足を$H$とすると$AD=4, BH=DM=2 $であった. このとき$CD$の長さは正の整数$a,b$を用いて$\sqrt{a} -b$と表せるので,$ a+b$を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
平面に重複なく$2N$個の点を打ち、任意の点を$2$個ずつ選んで$N$本の直線を作る。 ある打った$2N$個の点に対して、どの直線も交わらないような結び方の総数を$S(N)$とする。$S(N)$が取りうる$2025$以下の正整数値をすべて求めよ。 ただし、$N$は正整数とする。
$S(N)$が取りうる値の総和を半角数字で入力してください。
$n$ を自然数とする。 $n^5+n+1$ が互いに異なる $4$ つの素数の積で表されるような $n$ のうち最小のものを答えよ。
$P=122333444455555666666777777788888888999999999 $とする。 $P$を素因数分解せよ。
$P$の素因数の総積を半角数字で入力してください。 ただし、この問題は難しい計算をする必要がないことが保証されます。
$AB=3$なる鋭角三角形$ABC$について, $AC$, $BC$の中点をそれぞれ$M$, $N$とすると, $AN=4$が成立した. また, 三角形$ANC$の外接円と直線$MN$との交点のうち, $N$でないほうを$D$とすると, $DC=9$が成立した. このとき, $AD$の長さの二乗は互いに素な正整数$a$, $b$を用いて$\frac{a}{b}$と表されるので$a+b$を解答せよ.
次の文章中の空欄(①)に当てはまるものとしてもっとも適切なものを、ア~エのうちから1つ選び、記号で答えよ。
$a,b,c$を実数とする。$ax^2+bx+c=0$であることは、$x=\frac{-b±\sqrt{b^2-4ac}}{2a}$であるための(①)。
ア 必要十分条件である イ 必要条件であるが十分条件でない ウ 十分条件であるが必要条件でない エ 必要条件でも十分条件でもない
三角形$ABC$の内心を$I$,直線$AI$と$BC$の交点を$D$とすると$AI=CI=CD=6 $であった. このとき$AC$の長さは正の整数$a,b $を用いて$ \sqrt{a} +b$と表せるので, $a+b$を解答してください.
以下の $x$ に関する $100$ 次方程式の(重解を含む)$100$ 個の複素数解を $\alpha_1,\alpha_2,...,\alpha_{100}$ とします. $$x^{100}+x^{99}+2025x+12=0$$
このとき,以下の値を求めてください. $$\sum_{k=1}^{100} ({\alpha_k}^{100}+{\alpha_k}^{99})$$
整数で解答してください.
https://x.com/atwr0711/status/2000173940698927172?s=20 こちらの14番の問題と同じです.