求値問題3

Kinmokusei 自動ジャッジ 難易度: 数学 > 高校数学
2020年10月27日21:09 正解数: 13 / 解答数: 16 (正答率: 81.3%) ギブアップ数: 1

解説

展開すれば
$$
\sum_{n=1}^{24}n^2+1\cdot2\left(\frac{x_1}{x_2}+\frac{x_2}{x_1}\right)+1\cdot3\left(\frac{x_1}{x_3}+\frac{x_3}{x_1}\right)+\ldots+23\cdot24\left(\frac{x_{23}}{x_{24}}+\frac{x_{24}}{x_{23}}\right)
$$
各項に相加相乗平均の関係を用いれば、$x_1=x_2=\ldots=x_{24}$のとき最小値をとり、その値は$\left(1+2+3+\ldots+24\right)^2=300^2=90000$。

ちなみに、Jensenの不等式
$$
\sum_{k=1}^nw_kf(x_k)\geq f\left(\sum_{k=1}^nw_kx_k\right)
$$
において$f(x)=1/x(x>0),w_k=k/\sum_{i=1}^ni$とすると、より一般的な形である次の式が得られる。
$$
\left(\sum_{k=1}^{n}\frac{k}{x_k}\right)\left(\sum_{k=1}^{n}kx_k\right)\geq \left(\sum_{k=1}^nk\right)^2
$$
$n=24$としたものが本問となる。


おすすめ問題

この問題を解いた人はこんな問題も解いています

求面積問題14

Kinmokusei 自動ジャッジ 難易度:
4年前

15

問題文

周の長さが30である長方形ABCDがあります。辺CD上に∠APB=90°となるような点Pをとれるとき、長方形ABCDの面積の最大値を求めてください。

解答形式

半角数字で解答してください。

求長問題11

Kinmokusei 自動ジャッジ 難易度:
4年前

17

問題文

長方形$ABCD$を底面とする四角錐$P-ABCD$があります。$PA=1,PB=4,PC=8$のとき、$PD$の長さを求めてください。

解答形式

半角数字で解答してください。

求面積問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

10

問題文

図のように正方形・半円が配置されています。正方形の一辺の長さが2であるとき、青で示した部分の面積(の合計)を求めてください。

解答形式

半角数字で解答してください。

求面積問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

図中、同じ印のついている辺・角同士は等しいです。
緑の凹四角形の面積が10のとき、青の三角形の面積を求めてください。

解答形式

半角数字で解答してください。

求値問題

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

三角形の3つの内角の大きさを$A,B,C$とします。このとき、次の式の最小値を求めてください。
$$
\frac{1-\cos A}{\cos B+\cos C}+\frac{1-\cos B}{\cos C+\cos A}+\frac{1-\cos C}{\cos A+\cos B}
$$

解答形式

最小値は$\frac {[ア]}{[イ]}$となります。$[ア]+[イ]$を解答してください。
ただし、$[ア],[イ]$にはそれぞれ自然数が入り、その最大公約数は$1$とします。

求角問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

図のように長方形や直角三角形の内接円が配置されています。青で示した角の角度を求めてください。

解答形式

度数法で求め、半角数字で0以上360未満の整数を解答してください。
※度や°などの単位は付けないでください。

求面積問題12

Kinmokusei 自動ジャッジ 難易度:
4年前

14

問題文

図のように2つの半円が配置されています。(右側の半円の直径の一端は左側の半円の中心に一致する。)赤、緑で示した線分の長さがそれぞれ3,10のとき、青で示した四角形の面積を求めてください。
ただし、図中点線で示した直線は2つの半円の共通接線です。

解答形式

半角数字で解答してください。

求長問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

7

問題文

※2020.11.10 18:49 問題タイトルを修正しました。
(解答に影響はありません)

図中の線分ABの長さを求めてください。
緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。

解答形式

半角数字で解答してください。

求長問題13

Kinmokusei 自動ジャッジ 難易度:
4年前

8

問題文

正方形の中に図のように線を引きました。赤、青の線分の長さがそれぞれ1,7のとき、緑の線分の長さを求めてください。

解答形式

半角数字で解答してください。

求長問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

求長問題3

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

2つの正六角形が図のように配置されています。
赤い線分の長さが10のとき、青い線分の長さを求めてください。
ただし、図中"center"で示した点は各正六角形の外心です。

解答形式

半角数字で解答してください。