アクセスがしづらい状況について (2025年1月23日14:22)
現在、ポロロッカにアクセスがしづらい状況が発生しております。 サーバー強化など応急処置は完了しておりますが、本格的な調査は2月ごろとなる見込みです。 ご迷惑をおかけし、大変申し訳ございません。

65537は素数か?

masorata 自動ジャッジ 難易度: 数学 > 高校数学
2020年6月10日17:19 正解数: 3 / 解答数: 13 (正答率: 23.1%) ギブアップ不可

全 13 件

回答日時 問題 解答者 結果
2025年1月6日14:57 65537は素数か? Furina
不正解
2024年4月23日21:47 65537は素数か? sdzzz
正解
2024年4月17日6:15 65537は素数か? Ninja-Sushi-Manga
正解
2024年4月17日6:14 65537は素数か? Ninja-Sushi-Manga
不正解
2024年4月17日6:12 65537は素数か? Ninja-Sushi-Manga
不正解
2024年4月17日6:12 65537は素数か? Ninja-Sushi-Manga
不正解
2024年4月17日6:10 65537は素数か? Ninja-Sushi-Manga
不正解
2024年4月17日6:10 65537は素数か? Ninja-Sushi-Manga
不正解
2022年1月28日9:03 65537は素数か? ゲスト
不正解
2021年11月4日21:28 65537は素数か? ゲスト
不正解
2021年11月4日21:28 65537は素数か? ゲスト
不正解
2020年6月18日22:46 65537は素数か? nioshinoh_h
正解
2020年6月12日0:05 65537は素数か? ゲスト
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

C

nmoon 自動ジャッジ 難易度:
3月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

2023文化祭1

Kta 自動ジャッジ 難易度:
48日前

5

問題文

$p^2-pq-q^2+p+q=0$ を満たす素数の組 $(p,q)$ すべてについて,$p+q$ の総和を求めてください.

解答形式

半角数字で入力してください。

昔作った漸化式

masorata 自動ジャッジ 難易度:
13月前

7

問題文

数列 $\{a_n \}$ $(n=1,2,...)$ が漸化式:

$$
a_1=2, \ \displaystyle a_{n+1}=\frac{5a_n+3\sqrt{a_n^2-4\ }}{4}\ \ \ (n=1,2,\ldots)
$$

を満たすとき、$\displaystyle a_7=\frac{\fbox{アイウエ}}{\fbox{オカ}}$ である。

解答形式

ア〜カには、0から9までの数字が入る。
文字列「アイウエオカ」をすべて半角で1行目に入力せよ。
ただし、それ以上約分できない形で答えよ。

整数問題7/19

miq_39 自動ジャッジ 難易度:
19月前

7

問題文

$p^{2}q^{3}+r^{2}=s^{4}$ を満たす素数の組 $(p,q,r,s)$ は $n$ 組あり,それぞれの組について $S=p+q+r+s$ を求めると,$S$ の総積は $N$ である.
$n$ および $N$ の値を求めよ.

解答形式

一行目に $n$ の値を,二行目に $N$ の値を,それぞれ半角数字で解答してください.

Number.1 パラメーター

PCTSMATH 採点者ジャッジ 難易度:
4年前

1

問題文

2つのパラメーター(0,0)
がある
一回の操作でどちらかの数字を1増やすか減らすかする
それぞれ1/4の確率で起こる
この時操作をした回数が2n(nは自然数)の時パラメーターが(0,0)になる確率はnが大きければ大きいほど低くなることを証明せよ

解答形式

証明形式

D

nmoon 自動ジャッジ 難易度:
15月前

16

問題文

正五角形 $ABCDE$ があり,その中心を $O$ とします.線分 $BO$ 上に点 $F$ を,線分 $EO$ 上に点 $G$ をとり,三角形 $AFG$ の外接円と線分 $AB,AE$ との交点をそれぞれ点 $P,Q$ とすると,以下が成立しました.

$$\angle{FAG}=54^{\circ} , PB=28 , QE = 30$$

このとき,正五角形 $ABCDE$ の一辺の長さを求めてください.
ただし,正多角形の中心とはその正多角形の外接円の中心のことを表すとします.

解答形式

答えは正整数 $a,b,c$ を用いて $a+\sqrt{b - \sqrt{c}}$ と表されるので,$a+b+c$ を解答してください.

2年前

9

問題文

図の条件の下で、線分 $OO'$ の長さを求めてください。

解答形式

$OO'^2$ は正整数になるので、その値を半角数字で解答してください。

Final 2

seven_sevens 採点者ジャッジ 難易度:
36日前

2

数列${a_n}$を以下のように定義する。
$$
\begin{eqnarray}
a_1&=&\int_0^1dx\\
a_{n+1}&=&\int_0^{a_n+1}x^{a_n}dx
\end{eqnarray}
$$
このとき、$\log_{10}(a_5)$の値を求めよ。

Final 3

seven_sevens 採点者ジャッジ 難易度:
36日前

2

次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表

Final 4

seven_sevens 採点者ジャッジ 難易度:
36日前

3

$(x,y)$を$x^2+y^2=1,x\geqq0,y\geqq0$を満たすようにとる。
$z=(x,y)\cdot(\frac1{\sqrt2},\frac1{\sqrt2})$としたとき、以下の値を求めよ。
$$\int_0^1zdx$$

Test 2

seven_sevens 採点者ジャッジ 難易度:
6月前

2

この問題は、コンテスト機能のテストをするために投稿します。大喜利でもどうぞ。
$$2+2=?$$

Final 1

seven_sevens 採点者ジャッジ 難易度:
36日前

2

$$\int^1_0\int^{\sqrt{1-z^2}}_0\sqrt{1-z^2-y^2}dydz$$