次の条件を満たす直角三角形の内,面積が最大となる三角形の3辺の長さを昇順で答えてください。$2021^2=4084441$
半角数字で答えてください。 半角スペース区切りで答えてください。
3 4 5
ピタゴラス数の一般化式はいりません。
Discordでログイン パスワードでログイン
ログインすると? ログインすると、解答・ギブアップをする他に、問題を投稿したり、ランキングで競うことができます。
または
ログインせずに解答する
この問題を解いた人はこんな問題も解いています
円周率が3.25より小さいことを証明せよ
中学~高校レベルで証明してください
【補助線主体の図形問題 #104】 今週の図形問題です。2円と共通外接線というありがちな構図ですが、そこに長方形まで参上してしまいました。どうぞうまいこと処理してやってください。
${ \def\cm{\thinspace \mathrm{cm}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #078】 今週来週と2週続けて内心と傍心をテーマにした問題をお送りします。補助線が活躍するのはいつも通りです。若干計算量が多いので、紙とペンを用意した方が安心できるかもしれません。暗算で解いてやるという初等幾何猛者の方はどうぞ暗算で解いてやってください!
${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
【補助線主体の図形問題 #093】 今週の図形問題は傍接円がテーマで、傍接円を4つも登場させてしまいました。補助線を頼りに傍接円だらけの図形をねじ伏せてください。
【補助線主体の図形問題 #120】 今週の図形問題です。普段は補助線次第で暗算で処理できる問題を隙あらば入れているのですが、今回は計算量が多めです。補助線と工夫を武器に計算量を減らす道を探ってみてください。計算力に自信のある方は、どうぞその計算力でなぎ倒してもいいですよ!
【補助線主体の図形問題 #091】 図形の構造から面積比を求める問題を「面積関係」を称してしばしば出題してきました。今回はちょっと趣向を変えて、逆に面積比から辺比を求める問題です。式を立てるところまでは暗算で行けます。補助線と存分に戯れてください!
《参考》過去出題分から面積関係を問うている問題を一部抜粋
${}$ 他にもこのような問題にあたりたい場合には https://pororocca.com/problem/?category=5&name=&dif_min=&dif_max=&tag=%E9%9D%A2%E7%A9%8D&sort_by=oldest にアクセスすると一望できます。ただし、いわゆる普通の求積問題も交じっていることをご了解願います。
【補助線主体の図形問題 #049】 出題日の翌日である3月14日はその数の並びから「円周率の日」と定められています。ちょっと気が早いですが、円周率の日になぞらえて円周だけで構成された問題を用意してみました。タネがわかれば大した計算量ではないのですが、ちょっとした計算用紙があった方が安心して解けるかと思います。
三角形$ABC$の内部に点$P$があり,$\angle ABP=42^\circ$,$\angle CBP=42^\circ$,$\angle ACP=6^\circ$,$\angle BCP=12^\circ$がそれぞれ成り立っている.このとき,$\angle BAP$の大きさを度数法で表すと,$x^\circ$となる.
$x$に当てはまる数を求めよ.
解答のみを,半角数字で答えてください.
【補助線主体の図形問題 #022】 まもなく迎える7月22日は、$\dfrac{22}{7} = 3.\overline{142857} \fallingdotseq \pi$ から「円周率近似値の日」とされています。今回は円周率近似値の日を少し先取りして円だけで構成された問題を用意しました。暗算解法もいつも通り用意しています。補助線と共にしばし図形問題をお楽しみください。
${ \def\cm{\thinspace \mathrm{cm}} \renewcommand\deg{{}^{\circ}} \def\myang#1{\angle \mathrm{#1}} \def\mytri#1{\triangle \mathrm{#1}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。
円の中の線分が図の条件を満たすとき、円の半径を求めてください。
半径$r$は、$r=\dfrac{\sqrt{\fbox{アイ}}}{\fbox ウ}$と表されます。 文字列 アイウ を解答してください。ただし、ア~ウには1桁の非負整数が入ります。
$x,y,z$は全て正の実数とします。次式で定義される$f(x,y,z)$について、次の値を求めてください。$$f(x,y,z)=\frac{1+x^2}{y+z}+\frac{1+y^2}{z+x}+\frac{1+z^2}{x+y}$$ $(1)$ $f(x,y,z)$の最小値 $(2)$ $x+y+z=1$のとき、$f(x,y,z)$の最小値 $(3)$ $x^2+y^2+z^2=1$のとき、$f(x,y,z)$の最小値
$(1)$の答えは$\fbox ア$、$(2)$の答えは$\fbox イ$、$(3)$の答えは$\fbox ウ\sqrt{\fbox エ}$です。 文字列「アイウエ」を解答してください。
【補助線主体の図形問題 #010】 今年2021年の1月末から投稿を初めて10問目となりました。キリ番記念(?)に少しばかり手ごたえのある問題をお送りすることにします。うまい補助線を引けるだけでは不十分で、補助線を活かすための発想も必要です。じっくり腰を据えて補助線を戯れてみてください!
${ \def\cm{\thinspace \mathrm{cm}} \renewcommand\deg{{}^{\circ}} \def\jpara{\mathrel{\unicode{x2AFD}}} }$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。 (例) $12\cm$ → $\color{blue}{12.00}$ $10\sqrt{2}\cm$ → $\color{blue}{14.14}$ $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$ 入力を一意に定めるための処置です。 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。