全問題一覧

カテゴリ
以上
以下

問題文

各辺が$\;1\;$の正八面体$\;O$-$ABCD$-$E\;$において、$\overrightarrow{OA}=\overrightarrow{a},\;\overrightarrow{OB}=\overrightarrow{b},\;\overrightarrow{OC}=\overrightarrow{c},\;\overrightarrow{OD}=\overrightarrow{d}$とする。
また、辺$\;OB\;$の中点を$\;M\;$、正八面体の各頂点を通る球 (外接球) の中心を$\;L\;$とする。

$(1)\;\overrightarrow{d}$を$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$を用いて表せ
$(2)\;$球上の点と点$\;M\;$の最短距離を求めよ
$(3)\;(2)$において最短となる球上の点を$\;N\;$とすると、$\overrightarrow{LN}\;$を$\overrightarrow{a},\overrightarrow{b},\overrightarrow{c}$を用いて表せ

$$$$

解答形式

㋐~㋗に当てはまる半角数字を行ごとに入力してください。
㋘~㋚には$\;1\;$か$\;-1\;$を入力してください

$(1)\;\overrightarrow{d}=㋐\;\overrightarrow{a}+㋑\;\overrightarrow{b}+㋒\;\overrightarrow{c}$
$(2)\displaystyle\frac{\sqrt{㋓}-㋔}{㋕}$
$(3)\;\overrightarrow{LN}=\displaystyle\frac{\sqrt{㋖}}{㋗}(\;㋘\;\overrightarrow{a}+㋙\;\overrightarrow{b}+㋚\;\overrightarrow{c}\;)$

2月前

1

問題文

$f(x)=\frac{3-x}{ \sqrt{3(x+2)(-2x+1)}}$ $ (-2<x<0)$ とする
$f(x)$ が最小値を取るときの $x$ の値を求めよ

解答形式

解答は$-\frac{㋐}{㋑}$の形で表されるので、1行目に㋐を、2行目に㋑を半角数字で入力してください

2月前

10

問題文

$\log_227$の整数部分を答えよ


問題文

一辺の長さが1である正方形を $n$ 個、頂点が合うように辺同士でつなげてできる図形を $n$-オミノ とする。ただし、$n=1$ の場合は1つの正方形である。また、$n$-オミノが多角形をなすとき($n$-オミノで囲まれた領域が存在しないとき)、これを $n$-オミノ多角形 とする。

$\rm{S_n}$が$n$-オミノ多角形であるとき、$\rm{S_n}$の辺の数が2024となるような $n$ の最小値を求めよ。

解答形式

答えは整数となるので、半角で入力してください。

cosの性質

skimer 採点者ジャッジ 難易度:
2月前

0

問題文

$$
\cos n\thetaは\cos\thetaのみで表せるか
$$

解答形式

表せないときは反例を
表せるときは記述で答えなさい

大小関係

skimer 採点者ジャッジ 難易度:
2月前

0

問題文

$$x≧5のとき\hspace{2mm}
(x-1)^{x+1}>x^{x}\hspace{2mm}が成り立つことを示せ。$$

$$ただし、e^{1.375}=3.9\hspace{3mm}e^{-1.375}=0.25とする。$$

解答形式

記述でお願いします

4月前

12

問題文

正の実数$x,y,z$が$$(x+1)y^2=(x−1)z^2=\frac{3}{5}xyz$$
を満たすとき、
$$\frac{z}{y}=?$$

解答形式

例)?に入る数値を入力してください。

2025年

SU-JACK 自動ジャッジ 難易度:
4月前

5

問題文

$$
a_1=b_1=2025,
\begin{cases} a_{n+1}=a_n-2n+b_{2028}\\ b_{n+1}=b_n+4n+a_{2028}\end{cases}
$$

について、$a_n$の一般項を
$$a_n=α−(n−1)(n−β)$$と表したとき、$β$の値を求めよ

2024⑥

7777777 採点者ジャッジ 難易度:
6月前

1

問題文

$2024!$の約数の和は$2025$の倍数であることを示せ。

多項式の割り算

sha256 自動ジャッジ 難易度:
8月前

9

問題文

$n,m \ (m\geq n)$を正整数の定数とし、多項式$f(x)$を$f(x)=x^m$で定めます。
$f(x)$を$(x-2)^n$で割った商$Q(x)$について、$Q(2)=40$が成立しました。

$(n,m)$の組としてあり得るもの全てについて、$nm$の総和を求めてください。

解答形式

正整数値を半角で入力してください。

対数関数 底の合成関数

mgiz 採点者ジャッジ 難易度:
17月前

1

問題文

$$
f(x)=log_x 2とする。y=f(f(f(x)))について、
$$
(1) 定義域を述べよ。
(2) y=2のときxの値を求めよ。


問題文

2160nがある階乗と等しくなるような自然数nのうち、2番目に小さいもの、3番目に小さいものをそれぞれ求めよ。

解答形式

例えば、5,10のように、半角数字,半角数字と、左から2番目に小さいもの、3番目に小さいものと並べて記入してください。