全問題一覧

カテゴリ
以上
以下

Q242

Soft-Head 自動ジャッジ 難易度:
4年前

115

求長問題6

Kinmokusei 自動ジャッジ 難易度:
4年前

11

問題文

図のように配置された図形で、半円の半径が$5$、赤、青、緑の線分の長さがそれぞれ$3,X,Y$のとき、$X^2+Y^2$の値を求めてください。

解答形式

半角数字で解答してください。

Q241

Soft-Head 自動ジャッジ 難易度:
4年前

405

求面積問題9

Kinmokusei 自動ジャッジ 難易度:
4年前

9

問題文

問題文を3つの半円が図のように配置されています。赤い部分の面積が9、緑の部分の面積が5のとき、青い部分の面積を求めてください。

解答形式

半角数字で解答してください。

Q240

Soft-Head 自動ジャッジ 難易度:
4年前

283

求長問題5

Kinmokusei 自動ジャッジ 難易度:
4年前

21

問題文

※解答形式に注意!

図のように配置された3つの正三角形があります。青い線分の長さを求めてください。
ただし、赤、紫、緑の線分の長さはそれぞれ1,2,3で、隣り合う正三角形の間の角は30°です。

解答形式

答えは自然数$A,B$を用いて$A\sqrt{B}$の形に表せます。$A+B$を解答してください。
ただし、根号の中はできるだけ小さい自然数にしてください。

Q239

Soft-Head 自動ジャッジ 難易度:
4年前

356

まちがいさがし2

Foucault 自動ジャッジ 難易度:
4年前

6

問題文

由緒正しきまちがいさがしだよ!まちがいは全部で10個!
ただしい↓

まちがい↓

解答形式

下の図で示したマス(A~L)に、それぞれいくつずつまちがいがあるか改行で答えてね!

例えば、Aに3コ、Bに0コ、Cに1コまちがいがあったら
3
0
1
こんな感じでお願いします~

Q238

Soft-Head 自動ジャッジ 難易度:
4年前

166

[A] Times

hinu 自動ジャッジ 難易度:
4年前

14

A君は $38\times 57$ を次のように計算した。

$$
\newcommand{\nc}{\newcommand}
\nc{\wake}[1]{\begin{cases} #1 \end{cases}}
\nc{\f}[2]{\dfrac{#1}{#2}}
\nc{\s}[1]{\{#1\}}
\nc{\pmat}[1]{\begin{pmatrix} #1 \end{pmatrix}}
\nc{\lr}[1]{\left( #1 \right)}
\nc{\com}[2]{{}_{#1}{\rm C}_{#2} \right)}
\nc{\bar}[1]{{\overline{#1}}}
\nc{\bb}[1]{{\mathbb {#1}}}
\nc{\rmn}[1]{{\rm #1}}
\nc{\q}{\quad}
\nc{\x}{\times}
\nc{\a}{\alpha}
\nc{\b}{\beta}
\nc{\th}{\theta}
\nc{\Q}[1]{\fbox{#1}}
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}38\qq 57 \qq \rm x\\19\qq 114\qq \rm o\\9\qq 228\qq \rm o\\4\qq 456\qq \rm x\\2\qq 912\qq \rm x\\1\qq \underline{1824}\qq \rm o\\ \qq 2166\qq \rm \\\end{eqnarray}
$$

A君の計算方法に基づいて以下の $43\x 71$ の計算の空欄を埋めよ。

$$
\nc{\qq}{&\q\q\q\q\q&}\begin{eqnarray}43\qq 71 \qq \rm o\\\Q{ア}\qq \Q{オ}\qq \rm \Q{ケ}\\\Q{イ}\qq \Q{カ}\qq \rm \Q{コ}\\\Q{ウ}\qq \Q{キ}\qq \rm \Q{サ}\\\Q{エ}\qq \Q{ク}\qq \rm \Q{シ}\\1\qq \underline{2272}\qq \rm o\\ \qq 3053\qq \rm \\\end{eqnarray}
$$

解答を改行区切りで入力せよ。ただし $\Q{ア}$ から $\Q{ク}$ には 1 から 9999 までの整数が入り、 $\Q{ケ}$ から $\Q{シ}$ には o または x が入る。

[C] A Downward Tower

halphy 自動ジャッジ 難易度:
4年前

2

問題文

$n=0,1,\cdots$ に対し,$I_n$を
$$
I_n=\sum_{k=0}^{\infty}\frac{1}{2^{k}k!(2n+2k-1)!!}
$$で定める。ただし $(-1)!!=1$ とする。この級数は収束することが知られている(例えば,ダランベールの判定法を適用すればよい)。特に
$$
I_0+I_1=\fbox{ア}
$$である。また,$\{I_n\}$ は漸化式
$$
I_{n-1}-I_{n+1}=(\,\fbox{イ}\,n-\fbox{ウ}\,)I_n\quad(n=1,2,\cdots)
$$を満たし
$$
\lim_{n\to\infty}\frac{I_{n+1}}{I_n}=\fbox{エ}
$$が成り立つ。これらの結果を用い,漸化式を変形すると
$$
1+\cfrac{1}{3+\cfrac{1}{5+\cfrac{1}{7+\cfrac{1}{\ddots}}}}=\frac{\fbox{オ}^{\fbox{カ}}+\fbox{キ}}{\fbox{ク}^{\fbox{ケ}}-\fbox{コ}}
$$が得られる。ただし $\fbox{オ}\neq\fbox{キ}$ とする。

注意

自然数 $n\geq 1$ に対し,$n!!$ は $1$ 個とばしの階乗を表す。例えば,$n$ が奇数のとき
$$
n!!=n(n-2)(n-4)\cdots 3\cdot 1
$$である。

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{コ}$ には,半角数字 0 - 9 ,記号 - ,円周率 π ,自然対数の底 e のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{コ}$ に当てはまるものを改行区切りで入力してください。

[F]Without Triangles

wa1t_sush1 自動ジャッジ 難易度:
4年前

0

問題文


問題に不備がある可能性があるため、他の問題を先に解くことをおすすめします。申し訳ございません。ただいま確認作業を行っております。(18:31)


グラフとは,頂点集合とそのうち $2$ 点を結ぶ辺の集合のことである。今回は単純グラフ(同じ頂点を結ぶ $2$ 辺が存在しない場合)のみを考える。

$2n$ 頂点で三角形が存在しない,すなわちどの頂点集合 ${a, b, c}$ を選んでもすべてが辺によって結ばれていることはないようなグラフの辺数の最大値を求めよう。

まず,各頂点 $i\;(i=1,2,\cdots, 2n)$ に $\displaystyle{\sum_{i=1}^{2n}}v_i=1$ となるように非負実数 $v_i$ を割り当てる。この制約のもとで,

$$
S:=\sum_{\substack{\{i,j\}が辺で \\ 結ばれている}} v_iv_j
$$

を最大化することを考える(編注:和は辺で結ばれている頂点 $i, j\;(1\leq i < j\leq 2n)$ すべてにわたることを意味する)。

$$
X_x:=\sum_{\substack{\{x,i\}が辺で \\ 結ばれている}} v_i
$$

とする。次のような操作をくり返す。


操作
辺によって結ばれていない $2$ 頂点 $i,j$ について,$\fbox{ア}$ ならばある正の実数 $\varepsilon$ を選んで $v_i \mapsto v_i+\varepsilon$,$v_j\mapsto v_j-\varepsilon$ という置き換えを行う。ただし $\varepsilon$ は置き換え後も $v_1+\cdots+v_{2n}=1$ かつ $v_1, \cdots, v_{2n}\geq 0$ が成り立つようにとる。


操作をくり返すと,$(X_i+\varepsilon)v_i+(X_j-\varepsilon)v_j$ と $X_iv_i+X_jv_j$ の値を比較することで $S$ は必ず $\fbox{イ}$ ことが分かる。これ以上操作を行っても $S$ の値が変化しないような状態に達したときを考えると,$\fbox{ウ}$ となるような任意の $2$ 点 $i,j$ どうしは辺で結ばれている。グラフが三角形を含まないことから,このとき

$$
S\leq \fbox{エ}
$$

である(編注:等号が成立するグラフが存在するように選ぶこと)。はじめ,すべての $v_i$ が等しかったとすると,操作を行う前は

$$
S=\frac{(辺の本数)}{\fbox{オ}}
$$

なので,(辺の本数)$\leq \fbox{カ}$ が分かる。

等号は $2n$ 頂点が $n$ 頂点の組 $2$ つに分かれていて,異なる組に属している場合のみ辺が存在するようなグラフで成り立つ。よって最大の辺数は $\fbox{カ}$ である。

$\fbox{ア}$ 〜 $\fbox{カ}$ に最もよく当てはまるものを,次の選択肢の中からそれぞれ選びなさい。

選択肢

$\fbox{ア}$ の選択肢:

1$\;v_i\leq v_j$ 2$\;v_i\geq v_j$ 3$\;X_i\geq X_j$ 4$\;X_i\geq X_j$

$\fbox{イ}$ の選択肢:

1 変化しないか増加する 2 変化しないか減少する

$\fbox{ウ}$ の選択肢:

1$\;v_i>0, v_j>0$ 2$\;v_i=0, v_j=0$ 3$\;X_i>0, X_j>0$ 4$\;X_i=0, X_j=0$

$\fbox{エ}$ の選択肢:

1$\;n^2$ 2$\;\cfrac{n^2}{2}$ 3$\;\cfrac{n^2}{4}$ 4$\;1$ 5$\;\cfrac{1}{2}$ 6$\;\cfrac{1}{4}$

$\fbox{オ}$ の選択肢:

1$\;n^2$ 2$\;2n^2$ 3$\;4n^2$ 4$\;1$ 5$\;4$

$\fbox{カ}$ の選択肢:

1$\;n^2$ 2$\;\cfrac{n^2}{2}$ 3$\;2n^2$ 4$\;n^4$

解答形式

空欄 $\fbox{ア}$ 〜 $\fbox{カ}$ には,半角数字 1 - 6 のいずれかが当てはまります。$\fbox{ア}$ 〜 $\fbox{カ}$ に当てはまるものを改行区切りで入力してください。