全問題一覧

カテゴリ
以上
以下

shizukaki

公開日時: 2020年11月18日0:25 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

甲斐田晴:13
童田明治:14
ラトナ・プティ:1
ニュイ・ソシエール:??

解答形式

例)半角数字

shizukaki

公開日時: 2020年11月18日0:18 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

飛鳥ひな =5
御伽原江良=20
でびでび・でびる=56
鈴原るる=??

解答形式

例)10

Soft-Head

公開日時: 2020年11月18日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


Soft-Head

公開日時: 2020年11月15日23:59 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


TKJin

公開日時: 2020年11月15日18:22 / ジャンル: その他 / カテゴリ: その他 / 難易度: / ジャッジ形式: 自動ジャッジ

艦これ

回答は漢字でお願いします。(出ないと正しく正誤判定されません。)

Kinmokusei

公開日時: 2020年11月14日21:13 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図のように黒・赤・青の正方形と、その外接円が配置されています。黒い正方形の一辺の長さが2であるとき、緑で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

Soft-Head

公開日時: 2020年11月14日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


Soft-Head

公開日時: 2020年11月12日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


Soft-Head

公開日時: 2020年11月10日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


Kinmokusei

公開日時: 2020年11月8日17:36 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

※2020.11.10 18:49 問題タイトルを修正しました。
(解答に影響はありません)

図中の線分ABの長さを求めてください。
緑で示した2つの三角形の面積の差は11,赤と青で示した線分の長さの差は1です。

解答形式

半角数字で解答してください。

Soft-Head

公開日時: 2020年11月8日0:00 / ジャンル: 謎解き / カテゴリ: / 難易度: / ジャッジ形式: 自動ジャッジ


ofukufukufuku

公開日時: 2020年11月6日18:00 / ジャンル: 数学 / カテゴリ: 高校数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

数列$~\{a_n\},~\{b_n\}$を相異なる2つの実数$~\alpha,\beta~$を用いて以下のように定義する。
$$
a_n = \cfrac{1}{\displaystyle{\sum_{k=0}^n}\alpha^{n-k}\beta^{k}}~~~,~~~b_n = \sum_{m=0}^\infty\frac{1}{a_mn^{m+2}}
$$ただし、$\{b_n\}~$は$n\geq 2$で定義されるものとする。$\alpha,\beta~$が
$$
\begin{cases}
\alpha + \beta = 1\\
|\alpha||\beta| = 1
\end{cases}
$$を満たすとき、
$$
a_k = b_k
$$となる最小の自然数$~k~$は$~k=\fbox{ア}\fbox{イ}$であり、このとき$~b_k = \cfrac{\fbox{ウ}}{\fbox{エ}\fbox{オ}}$である。

解答形式

ア〜オには0から9までの数字のいずれかが入る。
数字列「アイウエオ」をすべて半角で入力し解答せよ。
ただし、分数は既約分数の形にすること。