鋭角三角形 $ABC$ があり,その外心を $O$ とします.直線 $AO,BC$ の交点を $D$,直線 $BO,AC$ の交点を $E$ とすると,
$$BD=6,\quad CD=3,\quad CE:EA=3:4$$
が成立しました.このとき,線分 $AC$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形 $ABC$ があり,その内心を $I$ とし,内接円 $\omega$ と線分 $BC,CA,AB$ との接点をそれぞれ $D,E,F$ とします.直線 $BC,EF$ の交点を $P$ とし,$I$ から線分 $AP$ におろした垂線の足を $Q$,線分 $DQ$ と $\omega$ の交点のうち $D$ でないものを $R$ とすると,
$$RD=9,\quad RQ=6,\quad AF=10$$
が成立しました.このとき,線分 $PR$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください
正三角形 $ABC$ があり,その内部に点 $D$ をとると,
$$AD=33,\quad BD=4,\quad \angle ADB=120^\circ$$
が成立しました.線分 $CD$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形 $ABC$ があり,その外心を $O$ とし,$\angle BAC$ の二等分線と辺 $BC$ の交点を $D$ とすると,
$$BD=3,\quad AC=10,\quad \angle ADO=90^\circ$$
が成立しました.このとき,線分 $AD$ の長さの $\mathbf{4}$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AC$ の鋭角二等辺三角形がありその垂心を $H$ とします.線分 $BC$ 上に点 $D$ をとり,点 $P,Q$ を $APQD$ がこの順に一直線上に並ぶようにとると $4$ 点$ACHP$,$4$ 点 $ABHQ$ はそれぞれ共円であり,
$$BD=15,\quad CD=25,\quad PQ=8$$
が成立しました.このとき, $AB$ の長さの $2$ 乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.