$a, b$ を整数とします.$x$ についての方程式
$$
x^2+ax+b=0
$$について,$a+b=k$ となるすべての $(a, b)$ の組についてそれぞれの方程式を解いていくと,方程式が整数解をもつ(重解含む)ような $(a, b)$ の組が $4$ 種類のみ存在しました.$0≦k≦20$ としたとき, $k$ としてありうる値の総和を求めてください.
半角数字で解答してください。
$1$ 辺の長さが $10$ である正方形 $ABCD$ の内部に点 $P$ をとると,$△ACP$ と $△BDP$ の面積がどちらも $10$ になりました.$P$ から $AB$ に下ろした垂線の足を $E$ としたとき,$AE$ の長さとしてありうる値の総積を求めてください.
半角数字で解答してください。
$64$個の球 $a_0,a_1,...a_{63}$それぞれを白色と黒色で塗り分ける方法で、以下の条件を満たすものは何通りありますか
・任意の整数 $i,j$ $(0\leqq i\leqq7,0\leqq j\leqq4)$ に対し、
$\lbrace a_{8i+j},a_{8i+j+1},a_{8i+j+2},a_{8i+j+3}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
かつ、
任意の整数 $k,l$ $(0\leqq k\leqq4,0\leqq l\leqq7)$ に対し、
$\lbrace a_{8k+l},a_{8k+l+8},a_{8k+l+16},a_{8k+l+24}\rbrace$ に含まれる白色の球と黒色の球が共に偶数個
半角数字で解答してください.
Weskdohn君は,次のゲームを行うことになりました.
正$733$角形のマークが書かれたカードW:$W_1W_2 \ldots W_{733}$から一枚選ぶ操作をOPE1と言い,これを$X$回繰り返します.
但し$X$について次の事実がわかっています.
正$3$角形のマークが書かれたカードS:$S_1S_2 S_3$と正$281$角形のマークが書かれたカードN:$N_1N_2 \ldots N_{281}$
について,それぞれ一枚ずつ取り出す操作をOPE2といい,OPE2を973回繰り返した場合の数を$X$通りとする.
ゲームで選んだカードWの組み合わせは$Y$通りと書けるので,$Y_{[9]}$の下三桁$n$を求めて下さい.
但し,異なる番号が振られた同じ種類のカード(例えば$E_d$と$E_h$)は互いに区別できるとし,また$O_{[K]}$は,$O$を$K$進法で書いた時の値とします.
求めた値を,半角で入力して下さい.
ex)答えが6106→6106と入力.
また,001のような数値が答えの場合は、0をなくさず001のまま回答して下さい.
AB=15, AC=24の鋭角三角形ABCがあり内心をI, 垂心をHとすると
4点BCHIは同じ円Γ上にあった.このとき円Γの半径の長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
外心をOとする△ABCがあり線分BC上に点Dをおくと以下が成立した.
AD=CD, BD-CD=15, OB=24, OD=9
このときABの長さを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの外心をOとする. AOを直径とする円とAB, ACの交点のうちAでないものを
それぞれD,EとするとDE=3, CD=5であり四角形BCEDは内接円を持ちました.
このとき△ABCの面積を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
△ABCの内心をI,∠A内の傍心をJとすると以下が成立した.
BI=7, CI=15, IJ=25
このときBCの長さを解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=30, AC=36の△ABCがあり線分BC上にBDECの順に並びBD:DE:EC=1:5:3となるよう
点D,Eをとると,線分ABとACに接し点D,Eを通る円が存在した.
このときBCの長さの2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.
AB=AC=90の△ABCがあり線分BCの中点をMとすると
△ABCの垂心Hは線分AMを4:1に内分した.
このとき△ABCの面積の2乗を解答してください.
答えは正の整数値となるので, その整数値を半角で入力してください.