数学の問題一覧

カテゴリ
以上
以下

柏陽祭H

re.ghuS 自動ジャッジ 難易度:
2月前

22

長方形$ABCD$がある.$BC$上に点$E$を,$CD$上に点$F$を以下の式が成り立つように取る.\
$\angle BAE=\angle CEF$,$\angle AFD=2\angle CEF$,$DF=2$,$CF=\sqrt{5}-2$が成り立つとき,$\angle DAF$の値を度数法で求めよ.

没問

poino 自動ジャッジ 難易度:
2月前

2

問題文

$n$ 以下の正整数のうち $n$ と互いに素なものの個数を表す $φ(n)$ を $a$ 回合成した関数を $φ^a(n)$ と書くとき、$φ^a(n)=1$ を満たす最小の $a$ が $8$ であるような $n$ の最小値と最大値のを解答してください。

解答形式

半角数字で入力してください。

OMCB020(E)の改題案だったヤツ

Shota_1110 自動ジャッジ 難易度:
2月前

22

問題文

正整数 $x, y$ が
$$x^{11}y^{10} = 2^{(2^{1110})} \cdot 3^{(3^{1110})} \cdot 5^{(5^{1110})} \cdot 37^{(37^{1110})} \cdot 1110$$
をみたすとき,$x$ のとり得る最小の値を求めて下さい.

解答形式

半角英数にし、答えとなる正整数値を入力し解答して下さい.

余談

OMCB020-E(URL : https://onlinemathcontest.com/contests/omcb020/tasks/9732)
のアレンジ,というよりかはこのコンテストのTester期間中に運営さんに改題を提案したときの問題です.
4bにそぐわないとしてOMCへの使用には至りませんでしたが,せっかくなのでよければ解いてみてください.

Circle(normal)

Weskdohn 自動ジャッジ 難易度:
2月前

1

問題文

点の定義は次をチェック(https://pororocca.com/problem/2047/)
$円X,X',ω$に接する円の内,小さい方の円$T'$の半径を求めよ.

解答形式

答えは互いに素な整数$a,b,c,d$で,$\frac{a+b√c}{d}$と書けるので,$a+b+c+d$を求めて下さい.但しd>0.
尚,半角で打ち込むこと.

中線と垂線

kusu394 自動ジャッジ 難易度:
2月前

4

問題文

$\angle ABC $ と $\angle BCA$ が鋭角であるような $\triangle ABC$ について,辺 $BC$ の中点を $M$ とします.また,$M$ から辺 $AB,AC$ におろした垂線の足をそれぞれ $P, Q$ とすると、線分 $AM, BQ, CP$ が一点で交わります.

$$ AB = 12, \ \ BC= 20 $$

のとき,$\triangle ABC$ の面積の二乗としてありうる値の総和を解答してください。

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯没問②

MrKOTAKE 自動ジャッジ 難易度:
2月前

2

問題文

△ABCの内心をI, 直線AIとBCの交点をDとするとAI=CI=CD=6 であった. このときACの長さは正の整数a,b を用いて√a+bと表せるので, a+bを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

KOTAKE杯没問①

MrKOTAKE 自動ジャッジ 難易度:
2月前

1

問題文

△ABCの内心をIとし直線AIと△ABCの外接円の交点のうちAでないものをM, 直線AMとBCの交点をD, Aから BCへの垂線の足をHとするとAD=4, BH=DM=2 であった. このときCDの長さは正の整数a,bを用いて√a-bと表せるので, a+bを解答してください.

解答形式

答えは正の整数値となるので, その整数値を半角で入力してください.

タイル塗り

G414xy 自動ジャッジ 難易度:
2月前

5

問題文

縦4列、横4行の16マスのうち、いくつかに色を塗ります。塗られるマスの数が列ごとに相異なり、行ごとに相異なる(但し、列と行で塗られる数が一致しても良い)、場合、塗り方は何通りありますか?

解答形式

半角数字で入力してください。

初等幾何

katsuo.tenple 自動ジャッジ 難易度:
2月前

6

問題文

AB=ACなる二等辺三角形ABCにおいて、点Aから下ろした垂線の足をD、三角形ABCの外心.垂心をそれぞれO.Hとする。
AH:HD=119:25、OH=138、BC=480のとき、
ABの長さを求めよ。

解答形式

半角で回答して下さい。

幾何作問練習3改

Lamenta 自動ジャッジ 難易度:
2月前

3

問題文

$AB>AC$なる鋭角三角形$ABC$において, $C$から$AB $に下ろした垂線の足を$D$, $BC$の中点を$M$, $AM$と$CD$の交点を$E$とし, 円$BDM$と$CD$の交点のうち$D$ではない方を$F$, 円$CDM$と$AM$の交点のうち$M$ではない方を$G$とします. $CD=32$, $DM=20$, $EF=5$であるとき, $FG$の長さの$2$乗を解答してください.

解答形式

半角数字で入力してください.

読み間違いによる問題

katsuo.tenple 自動ジャッジ 難易度:
2月前

15

問題文

AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。

解答形式

例)半角で解答して下さい。

素数

katsuo.tenple 自動ジャッジ 難易度:
3月前

30

問題文

4a²+b²+c²=d²を満たす素数の組について、
abcdの総和を求めよ。

解答形式

半角で答えて下さい。