$n=1,2,3...、k=0,1,2...n-1$とします。
また、不等式$$a_1<a_2<...<a_n≦n$$
を$A_0$とし、$A_0$の$n-1$個の$<$のうち$k$個が$≦$に置き換わったものの一つを$A_k$とします。
ここで、$A_k$をみたす正整数$(a_1,a_2...a_n)$の組の総数を$N_k$とするとき、$N_0+N_1+...+N_{n-1}$を$n$を用いて表してください。
$C$(コンビネーション記号)を用いて、$aCb$の形で表すことができるので、$a,b$の間に半角スペースを入力して、$a$ $b$を半角英数字で入力してください。
追記:ただし、$b$は$2$つの値が考えられるので、小さい方を入力してください。
例)$nC2→n$ $2,2nCn→2n$ $n$
※初めの解答では指定がなく間違い判定になった方がいたので修正させていただきました、、
表面積が$\displaystyle n \sin \frac{2\pi}{n}$である正$n$角錐の体積の最大値を$V_n$とする。極限値
$$\begin{eqnarray}
A &=& \lim_{n \to \infty} V_n \\
B &=& \lim_{n \to \infty} n^2 (V_n -A )
\end{eqnarray}$$を求めよ。
$A,B$は
$$
A = \fboxア \frac{\pi^\fboxイ}{\fboxウ} , \qquad B = \fboxエ \frac{\fboxオ \pi^\fboxカ}{\fboxキ}
$$となるので文字列「$\fboxア\fboxイ\fboxウ\fboxエ\fboxオ\fboxカ\fboxキ$」をすべて半角で1行目に答えてください。ただし$\fboxア\fboxエ$は$\texttt{+-}$のどちらか、$\fboxイ\fboxウ\fboxオ\fboxカ\fboxキ$は自然数であり、$\fboxオ$と$\fboxキ$は互いに素です。例えば$\displaystyle A=+\frac{\pi^{2}}{3},B=-\frac{5\pi^{7}}{11}$としたいときは+23-5711と回答してください。計算して-5688とはしないでください。
$0$ 以上 $1$ 以下の実数の組 $(x_0 , x_1 ,\ldots, x_{100})$ と正の実数の組 $(y_0 , y_1 ,\ldots ,y_{100})$ が以下の条件を満たしました.
$$
x_ny_n=n(0\leq n\leq 100),\quad y_0=2,\quad y_{100}=260
$$
この時,以下の値の最小値を求めてください.
$$
\sum_{k=0}^{99} \left(\sqrt{y_k^2+y_{k+1}^2-2y_ky_{k+1}\Bigl( x_kx_{k+1}+\sqrt{(1-x_k^2)(1-x_{k+1}^2)}\Bigr)}\right)
$$
求める値は $\sqrt{m}$ と表せるので, $m$ の値を半角数字で解答してください.
100をe進数で表記すると何桁になるか。(整数部分のみ)
半角数字+「桁」という文字(例:1桁)
$x,y,z$は整数とする。また、$p$は素数とする。
$x^{4}+y^{4}+z^{4}-2x^{2}y^{2}-2y^{2}z^{2}-2z^{2}x^{2}-8x^{2}yz-8xy^{2}z-8xyz^{2}=p$となるとき、$p$の最小値を求めよ。また、$p$が最小値をとるとき、$x,y,z$の組を全て求めよ。
$p$の最小値を$p$=~の形式で1行目に、$x,y,z$の組を$(x,y,z)$=~ の形式で2行目以降にすべて書いてください。ジャッジは自分でするのであまり気にしないで自由に回答してください。
三角形 $ABC$ の外接円を $\Gamma$ とします.辺 $BC$ 上に点 $X$ をとります.$B,X$ を通り,$\Gamma$ と接する円を $\Omega_1$ とし,$C,X$ を通り,$\Gamma$ と接する円を $\Omega_2$ とします.$\Omega_1$ と $\Omega_2$ は二点で交わっており,$X$ でない方の交点を $Y$ とします.直線 $XY$ は点 $A$ を通り,線分 $XC$ の垂直二等分線も点 $A$ を通りました.
$$BX = 4,CX=1$$を満たす時,三角形 $ABC$ の面積の二乗を求めてください.ただし,求める値は互いに素な二つの正整数 $a,b$ を用いて $\dfrac{a}{b}$ と表すことができるので,$a+b$ を解答してください.
非負整数を半角で入力してください.
$n$を自然数とする。$\displaystyle \sum_{k=1}^{n} n^k$を$8$で割った余りを$a_{n}$、 $\displaystyle S_{n}=\sum_{k=1}^{n}a_{k}$とする。すべての$n$に対して$a_{n+l}=a_{n}$が成り立つような自然数$l$の最小値と$S_{m+2025}=2S_{m}$が成り立つような自然数$m$の最大値を求めよ。
1行目に$l$を,2行目に$m$を半角英数字で解答してください。例えば$l=123,m=456$とする場合
123
456
としてください。
以下の条件1を満たす正整数列 $a_n\ (n \ge 1)$ を考える.
条件1:
$\cdot \ n\ge 1$ なる正整数 $n$ において, $a_{n+1}$ は $a_{n}$ 以下の正整数であって $a_{n}$ と互いに素なものの個数に等しい.
適切に $a_1$ を決めると以下の条件2が成立しました. このときの $a_1$ としてありうる値の個数を解答してください.
条件2:
$\cdot$ $a_1$ の任意の素因数は十進数表記で $1$ 桁である.
$\cdot$ 任意の $i,j \ge N$ なる整数 $(i,j)$ の組について, $a_i=a_j$ となる最小の $N$ が $N=13$ である.
解答を非負整数で入力してください.