数学の問題一覧

カテゴリ
以上
以下

QMT001(自作問題1問目)

shoko_math 自動ジャッジ 難易度:
8月前

9

問題文

$4\times4$ のマス目の各マスに $3,2,6$ のいずれかを書き込む方法のうち,どの横の行に書かれた $4$ 数の積も立方数であり,どの縦の列に書かれた $4$ 数の積も立方数であるような書き込み方は何通りあるかを求めてください.
ただし,回転や裏返しにより一致する書き込み方も異なるものとして数えるものとします.また,$3,2,6$ のうち使わない数があっても構いません.

解答形式

半角数字で解答してください.

RKC010

Furina 自動ジャッジ 難易度:
8月前

74

問題文

素数の組 $(p,q,r)$ であって,以下の等式
$$pq-64=r^4$$
を満たすものすべてについて,$p+q+r$ の総和を求めてください.

解答形式

半角整数値で解答してください.

知ってたら簡単な整数問題

noname 自動ジャッジ 難易度:
8月前

20

${999}$を2以上の最小の$2$つの立方数の差で表せ。

問題を一部訂正しました。毎度毎度誠に申し訳ございません。問題ミスがあったためこれまでの解答は正解にしました。

解答形式

a>b>1の自然数を用いてa^3-b^3というふうに表せるのでabと2つの整数を連続して半角で書いてください。
(例:15^3-3^3なら解答は153)

分数の足し算

tsukemono 自動ジャッジ 難易度:
8月前

29

問題文

次の計算をせよ。
$$
\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}
$$

解答形式

分子/分母 の形で解答してください
既約分数で解答してください
例 1/3

RKC009

Furina 自動ジャッジ 難易度:
8月前

10

問題文

正三角形 $ABC$ において,その外接円の劣弧 $BC$ 上(端点を除く)に点 $D$ をとり,三角形 $ABD,BCD,CAD$ の内心をそれぞれ $I_C,I_A,I_B$ とすると,$I_BI_C=2I_AI_B=6$ が成立しました.このとき,$BC$ の長さの $2$ 乗を求めてください.

解答形式

答えは正整数値になるので,半角で解答してください.

積分

tsukemono 自動ジャッジ 難易度:
8月前

25

問題文

次の定積分を求めよ。
$$
\int_{-1}^1\quad(x^{101}+2x^{99}+3x^{97}+・・・+51x)dx
$$

解答形式

半角数字のみを使って解答してください。

2変数関数の最大最小

tsukemono 自動ジャッジ 難易度:
8月前

29

問題文

関数$f(x,y)=x²+y²-2x+4y+1$の最小値とそのときの$x,y$の値を求めよ。
ただし、$x,y$はいずれも実数とする。

解答形式

x=𓏸𓏸,y=𓏸𓏸で、最小値𓏸𓏸と答えてください
数字は全て半角で答えてください

方程式の解の個数

tsukemono 自動ジャッジ 難易度:
8月前

12

問題文

$a$を定数とする。
このとき、$x$についての方程式$|x²+6x-7|-a=0$ の実数解の個数が3個になるような$a$の値を求めよ。

解答形式

a=𓏸𓏸というふうに解答してください。
また、全て半角で解答してください。
答えのみ入力してください。

N1

orangekid 自動ジャッジ 難易度:
8月前

14

問題文

次の方程式の整数解を求めよ。
ただし、$p, q$は非負整数である。
$$
x^2-15x+3^p-2^q=0
$$

解答形式

半角数字で小さい順につなげて入力してください。
例 $x=-4,-1,0,3,4$の時 -4-1034

No.09 関数の値と点対称

Prime-Quest 自動ジャッジ 難易度:
8月前

1

問題

次の関数が $|x-a|\leqq 1$ のもとで負の値と素数の値域幅をとるとき,$\sqrt b$ の平均を求めよ.

  • 二次関数 $y=f(x)$ のグラフは曲線 $y=x^2$ と接しつつ点 $(a,b)$ で対称となる.

解答形式

$100$ 倍した整数部分を半角数字で入力してください.

※ 問題を一部修正しました.今後も手直しが続く可能性があります.

高校数学の問題

sha256 自動ジャッジ 難易度:
8月前

6

問題文

$x$についての重解を持たない実数係数の3次方程式を
$x^3+ax^2+bx+c=0$とおき、この3解を
$x_1,x_2,x_3 \ (x_1<x_2<x_3)$とします。

$b+1>a+c$かつ$x_1,x_2,x_3$がいずれも絶対値が5以下の整数のとき、
$(x_1,x_2,x_3)$の組の総数を求めてください。

解答形式

0以上の整数値を半角数字で入力してください

整数問題2

natsuneko 自動ジャッジ 難易度:
8月前

15

問題文

正整数 $N$ が $2$ で割り切れる最大の回数を $v_2 (N)$ で表すことにします.
(例 : $v_2(6) = 1, \ v_2(16) = 4$)
このとき,
$$\sum_{i = 1}^{1024} \sum_{j = 1}^{1024} \sum_{k = 1}^{1024} v_2 ( \textrm {gcd} (i, j, k))$$
の値を解答して下さい. ( $\textrm{gcd}(i,j,k)$ で $i,j,k$ の最大公約数を表しているとします.)

解答形式

半角数字で解答して下さい.