数学の問題一覧

カテゴリ
以上
以下

自作問題7

iwashi 自動ジャッジ 難易度:
4月前

1

問題文

$m,m'\geq1,n\geq0$を満たす任意の整数$m,m',n$に対し$,\ $$A(m,n)$は
$$
A(1,n) = \frac{1}{n!},\qquad A(m+m',n) = \sum_{k=0}^{n}A(m,k)A(m',n-k)
$$を満たす。$1 \leq m \leq 100,0 \leq n \leq 100$を満たし$,\ $かつ$A(m,n)$が整数であるような整数$m,n$について$,\ $積$m\times n$の総和を求めよ。

初投稿

Upasha 自動ジャッジ 難易度:
4月前

16

問題文

命題「aⁿ+bⁿ=cⁿ (n整数、a,b,cの最大公約数1)を満たす全ての自然数a,b,cは互いに素である」の真偽を述べよ

解答形式

真ならば真、偽ならば偽と入力

二項係数の和と極限

nps 自動ジャッジ 難易度:
4月前

9

問題文

解答形式

半角で入力してください。
また、必要であればe,πを用いてください。

いつものking property(に似た)問題

nps 自動ジャッジ 難易度:
4月前

1

問題文

∮(-π/6→π/3) ((sinx)^3)/(sinx+cosx)dxの値を求めよ。

解答形式

解答は π/a-(√ b+c)/d-(1/e)log(√f+g)の形になります。
a,b,c,d,e,f,gに当てはまる自然数を順に半角で答えてください。
また、1つの値の間は1つずつ空白を開けるようにしてください。
(例)a=2, b=3, c=11,d=5,e=6,f=7,g=8の場合、
2 3 11 5 6 7 8


問題文

nを一桁の自然数とする。xについての多項式、

∫(0→x) (t^3 + {1/√(n-2)(n-3)(n-4)} t^-2 +1)^n dt

について、x^6の係数を自然数にするようなnを求めなさい。

解答形式

半角で一桁の数字を入力してください。

実数の存在性

daikokuda_harumichi 採点者ジャッジ 難易度:
4月前

0

問題文

x, y は x^2 + y^2 = 1 を満たす実数である。このとき、、等式 x^2 + y^2 + (y/x)^2 - xy - (y^2)/x - y = 0を満たすx, yは存在するか。 存在する場合はx, yを求め、存在しない場合はそれを示せ。

解答形式

日本語で論述してください。

不動点と放物線

sha256 自動ジャッジ 難易度:
4月前

0

問1.(この問題の解答は不要。)

$f(x)$を$2$次の多項式とする。
$4$次方程式$f(f(x))=x$が$4$つの実数解$x=x_i(i=1,2,3,4)$を持つとき、
座標平面上の$4$点$P_i(x_i,f(x_i))$が同一円周上にあることを示せ。

問2.(この問題の答えを半角英数字で入力せよ。)

問1において、$f(x)=3x^2-11x-15$の場合について、
実際に$4$点$P_i$が共有する円の半径$r$と中心の座標(p,q)を求め、
$pqr^2$の値を解答せよ。

データの分析・数列

oolong_tea 自動ジャッジ 難易度:
4月前

1

問題文

$1$ から $30$ までの自然数が書かれたカードがそれぞれ $1$ 枚ずつの計 $30$ 枚ある。
この中から $1$ 枚を引き,書かれている数字を確認してから束に戻す操作を $11$ 回繰り返す。
この $11$ 回の操作で得られた自然数を小さい順にならべ,$A_{1}$ から $A_{11}$ とする。
$A_{1}$ から $A_{11}$ は以下の条件を満たしている。

<条件>
① $A_{1}$ から $A_{11}$ は相異なる自然数である。
② データの範囲は $27$ である。
③ データの四分位範囲 [$\mathrm{IQR}$] は $9$ である。
④ 四分位数 [$Q_1,Q_2,Q_3$] はこの順に等比数列になっている。
⑤ 中央値と平均値 [$\bar{A}$] の差の絶対値は $1$ である。
⑥ $A_7$ から $A_{11}$ までの $5$ つの数の和は $A_1$ から $A_5$までの $5$ つの数の和のちょうど $2$ 倍である。
⑦ $A_{1}$ から $A_{11}$ の中に立方数が $2$ つある。
⑧ このデータのうち四分位数を除いた $8$ 個の数字を $2$ つずつに分けてできた $4$ つの数字の組
  $(A_1,A_2),(A_4,A_5),(A_7,A_8),(A_{10},A_{11})$ について、それぞれの組に $1$ つずつ素数がある。
⑨ このデータには外れ値が $1$ つ存在する。ただし外れ値は以下の通りに定義する。
   [$Q_1-1.5 \times \mathrm{IQR}$ 以下 または $Q_3+1.5 \times \mathrm{IQR}$ 以上]

問 このデータの要素を決定せよ。

解答形式

$A_1$ から $A_{11}$ までの11個の自然数を半角空白区切りで1行で回答

投稿者より

問題の不備などありましたら,
感想から教えてくださるとありがたいです。

5月前

5

問題文

点$O_1,O_2$を中心とする円$\omega_1,\omega_2$が異なる$2$点$A,B$で交わっている。これらの共通外接線のうち直線$O_1O_2$に関して$B$と同じ側に接点を持つ物を$l$とし、$\omega_1,\omega_2$との接点を$S_1,S_2$とする。

直線$AB$と$l$の交点を$X$とし、$X$から$\omega_1,\omega_2$に引いた($l$以外の)接線の接点を$T_1,T_2$とすると、$O_1,T_2,S_2$ / $O_2,T_1,S_1$はそれぞれ一直線上にあった。

$\omega_1$の半径が$\sqrt{3}$、$S_1X=\sqrt{2}$のとき、五角形$AO_1S_1S_2O_2$の面積を求めてください。

解答形式

求める値は正整数$a$及び、互いに素な正整数$b,c$、平方因子を持たない正整数$d$により$a+\dfrac{b\sqrt{d}}{c}$
と表せるので、$a+b+c+d$を半角英数字で入力してください。

垂心と外心と〇心

Rak 自動ジャッジ 難易度:
5月前

2

問題文

△ABC(AB<AC)の垂心をH、外心をOとし、直線HOと辺AB,BCの交点をD,Eとし、点Eは線分BCを3:1に内分している。このとき、AD/DBの値を求めなさい。ただし、Bの側からD,H,O,Eの順に位置している。

解答形式

互いに素な正の整数a,bを用いて、b/aの形で答えてください。
解答には
AD/DB=b/aと答えてください。

因数分解のお子様セット

Watagumo 自動ジャッジ 難易度:
5月前

1

問題

$$
2x^{11}+3x^{10}-6x^9+x^8+2x^7
+11x^6-4x^5+7x^4+6x^3+9x^2+2x-3を因数分解せよ
$$

解答形式

括弧の次数【$()^2$の形】の高い順に並べてください。()の中のxの式の次数が高いものは後半に並べてください。xの式の次数が同じ、かつ括弧の次数が同じもの同士では、1次の項の係数が大きい順(x,2xだったら2xが含まれる式の方を先に書く)にしてください。

Final 3

seven_sevens 採点者ジャッジ 難易度:
5月前

2

次の値を小数第2位まで答えよ。
$$\int_0^1\frac{1}{2\pi}e^{-\frac{x^2}2}dx$$
ただし必要ならば以下のリンクを使ってもよい。
https://ja.wikipedia.org/wiki/正規分布#正規分布表