数学の問題一覧

カテゴリ
以上
以下

微分・積分(14)

y 自動ジャッジ 難易度:
58日前

0

$$
f(x)=-{x}^{2m}-x^{n}-1(l<0,m<0)\\のf'(x)について答えて下さい。
$$
$$
(1)2m-1乗の符号 (a)+ (b)-
$$
$$
(2)n-1乗の符号 (a)+ (b)-
$$

二次関数(2)

y 自動ジャッジ 難易度:
59日前

0

$$
y=3a{x}^2+12bx+c(a<0,b<0,c>0)\\について、凸、頂点、最大値の符号をそれぞれ答えて下さい。
$$
$$
(ⅰ)凸 (1)+(2)-
(ⅱ)頂点 (1)+(2)-
(ⅲ)最大値 (1)+(2)-
$$

不等式(4)

y 自動ジャッジ 難易度:
59日前

0

$$
\frac{-b+|c|}{a}(a<0,b>0,c<0)\\について符号を調べて下さい。
$$
$$
(1)-
(2)+
(3)∓
(4)±
$$

不等式(3)

y 自動ジャッジ 難易度:
59日前

0

$$
\frac{a}{b}÷\frac{c}{d}(d>c>b>a)\\
について符号を調べて下さい。
$$
$$
(1)+
(2)-
(3)∓
(4)±
$$

不等式(2)

y 自動ジャッジ 難易度:
59日前

0

$$
\frac{a}{c}×-\frac{d}{b}(a.>0,b<0,c<0,d<0)\\の符号を調べて下さい。
$$
$$
(1)±
(2)∓
(3)+
(4)-
$$

不等式(1)

y 自動ジャッジ 難易度:
59日前

0

$$
-\frac{a}{b}+\frac{c}{a} (a>b>c)\\の符号は選んで下さい。
$$
$$
(1)+
(2)-
(3)±
(4)∓
$$

e進数!?

amberGames-777 自動ジャッジ 難易度:
59日前

9

問題文

100をe進数で表記すると何桁になるか。(整数部分のみ)

解答形式

半角数字+「桁」という文字(例:1桁)

複素数の2乗

amberGames-777 自動ジャッジ 難易度:
59日前

1

問題文

(1+i)^2を計算してください。

解答形式

半角で入力してください。

大小関係

y 自動ジャッジ 難易度:
2月前

0

$$
\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}},\frac{1}{\sqrt{40000}},\frac{1}{|{500}{i}^2|}\\の小さい方から順に並べて下さい。
$$
$$
(1)\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
<\frac{1}{\sqrt{40000}}
$$
$$
(2)\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}<\frac{1}{\sqrt{40000}}
$$
$$
(3)\frac{1}{\sqrt{40000}}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}<\frac{1}{|{500}{i}^2|}
$$
$$
(4)\frac{1}{\sqrt{40000}}<<\frac{1}{|{500}{i}^2|}<\frac{1}{log_{m}{m}^{log_{2}{1024}^{{log_{3}{59049}}}}}
$$

指数・対数(6)

y 自動ジャッジ 難易度:
2月前

0

$$
方程式m^\sqrt{\log_{x}{x}^{\log_{3}{81}^{\log_{2}{1024}}}}=\frac{1}{\sqrt{{m}^{n-4}}}\\について、nの値を求めて下さい。
$$
$$
(1)12(2)24(3)36(4)48
$$

絶対値(10)

y 自動ジャッジ 難易度:
2月前

1

$$
|\frac{cos180°}{sin60°}||\frac{cos60°}{tan135°}||\frac{sin90°}{cos180°}|
$$

微分・積分(13)

y 自動ジャッジ 難易度:
2月前

1

$$
|\int_{0}^{log_{2}{1024}}\frac{{m}^2+2m-3}{m-1}dm\int_{0}^{cos60°}\frac{{n}^2+2n-3}{n+3}dn|\\について積分して下さい。
$$