数学の問題一覧

カテゴリ
以上
以下

Kinmokusei

公開日時: 2022年6月5日2:24 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図において、青で示した部分の面積と、赤で示した部分の面積の差が $63$ のとき、四角形 $ABCD$ の面積を求めてください。

解答形式

半角数字で解答してください。

tb_lb

公開日時: 2022年5月29日23:18 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #058】
 今週の図形問題は、正三角形と重心を舞台に三角定規が大活躍する1題となっています。意味深な折れ線の意図をぜひ看破してください。余裕のある方は暗算でどうぞ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2022年5月22日0:21 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で,青で示した線分の長さを求めてください.

※頂角 $30°$ の合同な二等辺三角形

解答形式

$x^2$ の値を半角数字で解答してください.

tb_lb

公開日時: 2022年5月15日22:14 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #057】
 今週の図形問題はいつもにも増して多くの解法がありそうな感じに仕上がりました。暗算解法が仕込んであるのはいつも通りですが、補助線をガリガリ引いてのゴリ押し解法でもおそらく押し切れます。補助線と共に試行錯誤をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2022年5月8日22:42 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #056】
 今週の図形問題は内心多めでお送りします。直感でいろいろ断定したくなりますが、ぐっとこらえて論証まで楽しんでいただけたら幸いです。暗算解法も仕込んでありますよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2022年5月4日2:43 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で,青で示した線分の長さ $x$ を求めてください.

解答形式

$x^2$ は正整数となるので,これを解答してください.

tb_lb

公開日時: 2022年5月1日22:52 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #055】
 直角三角形を舞台に、垂線&角の2等分線&平行線と直線図形の定番役者がそろいました。代数的にガリガリやりたくなりますが、いつも通り暗算解法も仕込んであります。選択肢の多さが生み出す発見をお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

tb_lb

公開日時: 2022年4月24日23:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 角度

【補助線主体の図形問題 #054】
 今週は円がらみから王道の求角問題をお送りします。腕に覚えのある方は暗算で、そうでない方も存分に補助線と戯れてみてください!

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2022年4月24日8:07 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。

tb_lb

公開日時: 2022年4月17日22:41 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ

初等幾何 長さ

【補助線主体の図形問題 #053】
 先週は予告もなく出題をお休みして失礼しました。
 今週の図形問題は大した計算量ではないのですが、簡単なメモが取れるとぐっと解きやすくなるかと思います。補助線が活躍するのはいつも通りです。どうぞ存分にお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

Kinmokusei

公開日時: 2022年4月17日1:47 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

図の条件の下で、青で示した角の大きさを求めてください。

解答形式

$x=a$ 度です。$a$ を半角数字で解答してください。

Kinmokusei

公開日時: 2022年4月10日1:17 / ジャンル: 数学 / カテゴリ: 中学数学 / 難易度: / ジャッジ形式: 自動ジャッジ


問題文

2つの正六角形を組み合わせた、図のような七角形があります。青で示した部分の面積が49、赤で示した部分の面積が28のとき、緑で示した三角形の面積を求めてください。

解答形式

半角数字で解答してください。