数学の問題一覧

カテゴリ
以上
以下
2年前

12

【補助線主体の図形問題 #090】
 間もなく迎える3月14日は円周率$\pi$の近似値$3.14$から「円周率の日」、転じて「数学の日」に指定されています。そんな「円周率の日」「数学の日」に先んじて円だらけの問題を用意しました。手慣れた方なら暗算で行けるかもしれません。今一時、円だらけの図形と戯れてみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

2年前

9

【補助線主体の図形問題 #089】
 今週の図形問題は円&等脚台形というありがちな素材でありながら、ちょいとひねって解きにくい問題となっています。方針によって計算量は大きく変わりますが、想定解ではちょっとしたメモ帳で収まる量です。補助線と共に試行錯誤を楽しんでもらえたら幸いです。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

三角形と半円

tb_lb 自動ジャッジ 難易度:
2年前

7

【補助線主体の図形問題 #088】
 しばしば休んでしまいましたが、今週の図形問題をお送りします。今週は意味ありげな折れ線を登場させてみました。いろいろな関係を発見しながら、どうぞお楽しみください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

整数問題2/6

miq_39 自動ジャッジ 難易度:
2年前

29

問題文

$2^{n}+6n+1$が平方数となるような自然数$n$の値をすべて求めよ.

解答形式

半角数字で解答してください.解が複数ある場合は,小さいものから順に,1行に1つずつ書いてください.

2年前

20

【補助線主体の図形問題 #087】
 今週の図形問題は面積関係をテーマにしてみました。中点だらけということもあり、複雑な計算は不要です。自信のある方はぜひ暗算で処理してみてください。

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

弧上の点と垂直

tb_lb 自動ジャッジ 難易度:
2年前

15

【補助線主体の図形問題 #086】
 今週の図形問題です。今回は円弧と垂線を組み合わせてみました。円弧と垂線が組み合わさったときに生じる性質をお楽しみください。補助線が活躍するのはいつも通りですよ!

解答形式

${\def\cm{\thinspace \mathrm{cm}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


次の式を因数分解しなさい

$2(x-y)^2-xy(x^2+2xy+y^2-3)+(2x+2y)^2-(x+y)^2+xy[(x+y)(x-y)+2y(x+y)+5]$

解答形式

半角で解答のみを記入すること

降べきの順で記入すこと

同じ項の中にx,yが同時にある場合、xを先に記入すること

指数の表記は ^n の形で解答すること

括弧の外にある係数は左側に記入すること

括弧内の項は、文字 数 の順に記入すること

等脚台形と長方形

tb_lb 自動ジャッジ 難易度:
2年前

14

【補助線主体の図形問題 #085】
 2023年初頭は西暦問題をお送りしてきたので、当問が今年初の図形問題になります。図形問題初めは求角問題にしてみました。
 僕は(ほぼ)毎週日曜の夜に図形問題を投稿しており、基本的にどれも補助線を引いて解けるよう意識しています。とはいえ、解き方は自由です。補助線主体の問題を代数的にねじ伏せることに快感を覚える方もいらっしゃるでしょう。どうぞお好きなように解いてください。

解答形式

${\renewcommand\deg{{}^{\circ}}}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。


${}$ 西暦2023年問題第6弾です。桁数を少し大きくした割り算と余りの問題をこさえてみました。面倒な計算をできるだけ避ける工夫を探してみてください。(完全には避けられないので、電卓や電卓機能サービスを用意しておいた方がいいかもしれません)

解答形式

${}$ 解答は、この8桁の自然数をそのまま入力してください。
(例) $\square\square\square\square$に入るのが$0106$で8桁の自然数が$20010623$となるとき
   → $\color{blue}{20010623}$


${}$ 西暦2023年問題第5弾です。今回は三角数を取り上げてみました。ド根性ではなく、スパッと求まる解法をぜひ探してみてください。

解答形式

${}$ 解答は、$n$の値をそのまま入力してください。「$n=$」の記載は不要です。
(例) $n=105$ → $\color{blue}{105}$


${}$ 西暦2023年問題第4弾です。今年の西暦問題も折り返しとなりました。桁数が大きいですが、手計算で処理できるよう仕込んであります。どうぞお楽しみください。

解答形式

${}$ 解答は、$N$の値をそのまま入力してください。「$N=$」の記載は不要です。
(例) $N=2323232323$ → $\color{blue}{2323232323}$


${}$ 西暦2023年問題第3弾です。今回は数列から2023の位置を問うという、入試問題にありがちなテーマ設定にしてみました。問題文はあえて小難しく書いてますが、数列の規則性をとらえられれば十分です。軽く解いてやってください。

解答形式

${}$ 解答は、$a_{n}=2023$となる$n$の値をそのまま入力してください。なお、$a_{n}=2023$となる$n$が存在しない場合には「-1」と入力してください。
(例) $a_{103}=2023$ → $\color{blue}{103}$