問題❶

rakuraku1216 自動ジャッジ 難易度: 数学 > 中学数学
2023年3月26日19:00 正解数: 7 / 解答数: 8 (正答率: 87.5%) ギブアップ不可
この問題はコンテスト「数学思考力テスト 第1回」の問題です。

全 8 件

回答日時 問題 解答者 結果
2024年3月27日15:58 問題❶ 243
正解
2024年3月27日15:58 問題❶ 243
正解
2024年2月4日13:49 問題❶ nmoon
正解
2024年2月3日20:07 問題❶ natsuneko
正解
2023年8月25日19:56 問題❶ mochimochi
正解
2023年3月27日16:13 問題❶ naoperc
正解
2023年3月27日1:01 問題❶ tsx
正解
2023年3月26日19:13 問題❶ Yamato
不正解

おすすめ問題

この問題を解いた人はこんな問題も解いています

問題❷

rakuraku1216 自動ジャッジ 難易度:
12月前

6

高さが100cmで底面積が600cm²の直方体の形をした水槽がある。この水槽は通常の水槽とは異なり、水槽の底面を上下移動させることができる。(底面が移動するとそれに伴って水も移動するため、水面も移動する。)
まず、底面を1番下にした状態で毎分500cm³で40分間、水を入れた。
次に底面を上にXcm移動させた。
そして底面が上に移動した状態で毎分600cm³で60分間、水を入れた。
そして底面を上にXcm移動させると、4000 cm³ だけ水が溢れ出た。

この時、Xの値を求めなさい。ただし分数になる場合は以下のように答えなさい。

(例 1/2の場合は12 54/73の場合は5473 22/23の場合は2223 と答える )

問題❹

rakuraku1216 自動ジャッジ 難易度:
12月前

10

4×4の16マスがある。このマス目を赤、青、黄、緑で塗ることを考える。

A:縦と横のどの辺をとっても赤、青、黄、緑が一回ずつ出現する。
B:以下のように4つの部屋に分割したときにどの部屋をとっても赤、青、黄、緑が1回ずつ出現する。
□□|□□
□□|□□
__|__
□□|□□
□□|□□

AとBを両方満たす塗り方は何通りありますか?
(例:30通りだったら、30と答えなさい)

問題❸

rakuraku1216 自動ジャッジ 難易度:
12月前

14

A以上B以下の整数に出現する1の個数を、A●Bと表すとする。
例えば6、7、8、9、10、11には、3つの1が出現しているため、6●11=3 となる。

(15●30)●(220●X)=12 のとき、考えられる整数Xとして最も大きいものを答えなさい。

求長問題26

Kinmokusei 自動ジャッジ 難易度:
2年前

6

問題文

直角二等辺三角形と、その頂角を通る円が図のように配置されています。青で示した線分の長さを求めてください。

解答形式

半角数字で解答してください。

3年前

14

【補助線主体の図形問題 #007】
 今回は図形問題の王道から円がらみの求角問題を用意しました。手慣れている方なら脳内で処理できるくらいの計算量です。どうぞ円と角度の世界を堪能してください。

解答形式

${
\renewcommand\deg{{}^{\circ}}
\def\myang#1{\angle \mathrm{#1}}
\def\myarc#1#2{\stackrel{\style{transform:matrix(#1,0,0,1.5,0,2)}{\frown}}{\mathrm{#2}}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。角度は弧度法ではなく度数法で表すものとします。
(例) $12\deg$ → $\color{blue}{12.00}$  $\frac{360}{7}^{\circ}$ → $\color{blue}{51.43}$
 入力を一意に定めるための処置です。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ある定理の紹介
  3. ヒント1・2の内容をやや具体的に

整数問題2/7

miq 自動ジャッジ 難易度:
14月前

7

問題文

$2^{p}+7^{q}=r^{p+q-r}$を満たす素数の組$(p,q,r)$をすべて求めよ.

解答形式

文字列$pqr$を,半角数字で解答してください.解が複数ある場合は,
(1) $p$の値が小さい順
(2) $p$の値が等しい組は,$q$の値が小さい順
(3) $p,q$の値がともに等しい組は,$r$の値が小さい順
に,1行に1つずつ書いてください.

追記

どなたか素数に限らない整数解を全て求めてくださるとありがたいです.


問題文

下図は、直角二等辺三角形と正三角形と頂角が150°の二等辺三角形を組み合わせた図形です。直角二等辺三角形の面積が24㎠のとき、図形全体の面積を求めなさい。

解答形式

単位は㎠(単位は書かなくてよい)、数字は半角で入力してください。
例)10


【補助線主体の図形問題 #025】
 このところ円がらみの出題が続いていたので、今回は直線図形だけで固めてみました。暗算でさくっと解いてしまってください!

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 注目点をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き
21月前

7

問題文

図の条件の下で、線分 $CG$ の長さを求めてください。
※図中の各線分の長さの比は正確とは限りません。

解答形式

互いに素な正整数 $a,b$ によって $CG=\dfrac{a}{b}$ と表せるので、$a+b$ の値を半角数字で解答してください。


【補助線主体の図形問題 #017】
 今回は方針により計算量が変化する問題を用意しました。とはいえ暗算で解くには幾分厳しいです。簡単な計算用紙&筆記具をお手元にご用意の上で挑戦してみてください。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体方針をぼんやりと
  2. ヒント1の続き
  3. ヒント2の続き
  4. ヒント3の続き

直角三角形と8個の円

tb_lb 自動ジャッジ 難易度:
3年前

10

【補助線主体の図形問題 #006】
 投稿日である今日3月14日は、円周率$\pi$の近似値 $3.14$ になぞらえて「円周率の日」と定められています。ということで「円周率の日」記念に円多めの問題を用意しました。
 補助線が活躍するのはいつも通りです。ちょっとした知識があると暗算で処理可能ですが、そうでなくとも大した計算量ではありません。どうぞ円まみれのお時間を楽しんでいただければ幸いです。

解答形式

${
\def\cm{\thinspace \mathrm{cm}}
\def\mytri#1{\triangle \mathrm{#1}}
}$ 解答は小数第3位を四捨五入して、小数第2位までを単位なしで入力してください。
(例) $12\cm^2$ → $\color{blue}{12.00}$  $10\sqrt{2}\cm^2$ → $\color{blue}{14.14}$  $\dfrac{1+\sqrt{5}}{2} \cm^2$ → $\color{blue}{1.62}$
 入力を一意に定めるための処置です。
 たとえば答えに無理数を含む場合、$\sqrt{2}=1.41$や$\pi=3.14$などでは必要な桁が足りない場合があるのでご注意ください。
 近似値を求める際には、関数電卓やグーグルの電卓機能、Wolfram|Alpha https://www.wolframalpha.com などのご利用をお勧めします。

ヒント内容の予告

  1. 全体の方針をぼんやりと
  2. ヒント1の内容をやや具体的に
  3. ヒント2の続き

求面積問題29

Kinmokusei 自動ジャッジ 難易度:
2年前

8

問題文

図の条件のもとで、緑の正三角形の面積を求めてください。

※ hexagram : 六芒星

解答形式

半角数字で回答してください。