数学の問題一覧

カテゴリ
以上
以下

角の3等分線と円

Calculator 自動ジャッジ 難易度:
6月前

3

問題文

内接五角形$ABCDE$があり、$∠BAC$=$∠CAD$=$∠DAE$である。
また、$AB=12$、$AC=17$、$AD=20$である。
このとき、$AE$の長さは互いに素な正の整数$p,q$を用いて$\frac{p}{q}$と表せるので$p+q$を解答してください。

解答形式

半角で解答してください。

A

nmoon 自動ジャッジ 難易度:
6月前

37

問題文

2つの正整数 $a,b$ の組のうち,最小公倍数が最大公約数の $10$ 倍となり,$a+b=154$ を満たすもの全てについて,$ab$ の総和を求めてください.

解答形式

非負整数で解答してください.

D

nmoon 自動ジャッジ 難易度:
6月前

11

問題文

4次方程式 $x^4-4x^3-21x^2-8x+4=0$ の4つの相異なる実数解を,小さいものから順に $a_{1},a_{2},a_{3},a_{4}$ とします.このとき,以下の値を求めてください:

$$\displaystyle\frac{1}{a_{1}^2-a_{1}a_{2}+a_{2}^2}+ \displaystyle\frac{1}{a_{3}^2-a_{3}a_{4}+a_{4}^2} $$

解答形式

互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

C

nmoon 自動ジャッジ 難易度:
6月前

11

問題文

三角形 $ABC$ の外心を $O$,垂心を $H$,外接円を $\Gamma$ とする.そして,以下のように点を4つとる.

  • 直線 $BH$ と $\Gamma$ との交点を $P(\not=B)$ とする.
  • 直線 $PO$ と $\Gamma$ との交点を $Q(\not=P)$ とする.
  • 直線 $QH$ と $\Gamma$ との交点を $R(\not=Q)$ とする.
  • 直線 $RO$ と $\Gamma$ との交点を $S(\not=R)$ とする.

このとき,3点 $ C,H,S$ が同一直線上にあった.

$$AH=17 , AO=11$$

のとき,三角形 $ABC$ の面積を求めてください.

解答形式

答えを2乗した値は,互いに素な2つの正整数 $a,b$ を用いて $\displaystyle\frac{a}{b}$ と表されるので,$a+b$ を求めてください.

B

nmoon 自動ジャッジ 難易度:
6月前

31

問題文

3種類の文字 $A,B,C$ を用いて以下の条件を満たした長さが5の文字列は全部でいくつあるか.

  • $A$ の右隣にある文字は $B$ ではない.

  • $B$ の右隣にある文字は $C$ ではない.

解答形式

非負整数で解答して下さい.

大きい数の位の値

noname 自動ジャッジ 難易度:
6月前

6

問題文

$1998^{2024}$の下$2$桁を求めよ。

解答形式

1行目に半角整数で入力してください。

OMCBにありそう

sha256 自動ジャッジ 難易度:
6月前

19

問題文

初項が$1(a_1=1)$の数列{$a_n$}は、任意の正整数$n$に対し
$$
a_{n+1}^3-10a_na_{n+1}^2+31a_n^2a_{n+1}-30a_n^3=0
$$
を満たしている。
$a_{60}$としてあり得る値すべての総積を求めたい。
ただし答えは非常に大きいので、答えの正の約数の個数を1000で割ったあまりを答えよ。

解答形式

$0$以上$999$以下の整数を半角英数字で入力してください。

(11/7:一部問題文を修正)

幾何

katsuo_temple 自動ジャッジ 難易度:
6月前

4

問題文

$∠B=60°$を満たす鋭角三角形$ABC$について、その内接円が$AC,AB$にそれぞれ$D,E$で接している。$∠B$の二等分線と直線$DE$の交点を$F$とすると以下が成立した。
$$
AB=4 CF=3
$$
$F$を通り$AB$と平行な直線と$AC$の交点を$G$とするとき、$CG²$の値を求めてください。

解答形式

半角で解答してください。

図形

ammonitenh3 自動ジャッジ 難易度:
6月前

6

問題文

三角形ABCとその辺AB上にある点Dと辺CA上にある点Eが次の二つの条件を満たしている.(ただし、点D,Eは点Aとは一致しない)
 (Ⅰ)AB=13,BC=14,CA=15
 (Ⅱ)4点B,C,E,Dは共円
 このとき、「点Aを通りDEに垂直な直線」と、線分BCの交点をFとする.
 BFの長さを求めよ.

解答形式

例)この答えは、互いに素な自然数$a$,$b$を用いて$\frac{a}{b}$と書けるので、$a$+$b$の値を答えてください.

2のべき乗と三角形

kusu394 自動ジャッジ 難易度:
6月前

4

問題文

$a + b + c = 999$ かつ $a \le b \le c$ を満たす正整数の組 $(a, b, c)$ であって,
$2^a, 2^b, 2^c$ が非退化な三角形の三辺の長さとなるものは何通りありますか.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

最小公倍数

kiriK 自動ジャッジ 難易度:
6月前

2

問題文

$$LCM(ax,x^2+3x+2)=LCM(ax,b×x!)$$が成り立つ時、$a+2b+3x$ の値として考えられるものの総和を答えよ。
ただし$x$は自然数、$a,b$は素数とする。

解答形式

半角数字

P3

Lamenta 自動ジャッジ 難易度:
6月前

19

問題文

$\angle B=90^{\circ}$なる直角三角形$ABC$において,$AC$の中点を$M$とすると,$BC$上(端点を除く)に$AB=MP=MQ$なる異なる$2$点$P$,$Q$をとることができ,$B$,$P$,$Q$,$C$はこの順にあった.また,直線$MQ$について$B$と対称な点を$X$とすると,$AX=11$,$PX=18$を満たした.このとき,$BC$の長さの$2$乗を求めよ.

解答形式

求める値は互いに素な正整数$a,b$を用いて$\dfrac{a}{b}$と表せるので,$a+b$を半角数字で解答してください.