$$
{\sqrt{cos60°*log_\frac{1}{2}\frac{1}{2}^{{{{{{{log_\frac{1}{2}\frac{1}{4}}^{log_\frac{1}{2}\frac{1}{8}}}^{log_\frac{1}{2}\frac{1}{16}}}}^{log_\frac{1}{2}\frac{1}{32}}}}}}}
$$
$n$ を $3$ 以上の整数とする。点 $\mathrm{O}$ を中心とする、半径 $1$ の円の形をしたピザがある。ピザの周上には、等間隔に点 $\mathrm{P}_1,\ldots,\mathrm{P}_n$ が並んでいる。
線分 $\mathrm{OP}_1$ 上に、線分 $\mathrm{OO'}$ の長さが $d$ となるような点 $\mathrm{O'}$ をとる。ここで $0< d < 1$ は定数である。ピザを線分 $\mathrm{O'P}_1,\ldots,\mathrm{O'P}_n$ によって分割し、分けられた $n$ 個のピザのうち線分 $\mathrm{P_1P_2,P_2P_3,\ldots, P_nP_1}$ を含む部分の面積を、それぞれ $S_1,\ldots,S_n$ とする。
$S_i$ の 平均はもちろん $\displaystyle \bar{S}= \frac{1}{n}\sum_{i=1}^{n}S_i=\frac{\pi}{n}$ である。では、$S_i$ の分散 $\displaystyle \sigma^2 = \frac{1}{n}\sum_{i=1}^{n}(S_i-\bar{S})^2$ はどうなるだろうか。以下の空欄を埋めよ。
(1)$\displaystyle \frac{\sigma ^2}{d^{\alpha}}$ が $d$ によらない定数となるような $\alpha$ の値は $\alpha=\fbox{ア}$ である。$n=12$ のとき、$\sigma^2$ を具体的に計算すると
$$
\sigma ^2 = \frac{\fbox{イ}-\sqrt{\fbox{ウ}}}{\fbox{エ}}d^{\fbox{ア}}
$$
である。
(2)極限 $\displaystyle \lim_{n\to\infty}n^{\beta}\sigma^2$ が $0$ でない有限の値に収束するような $\beta$ の値は $\beta=\fbox{オ}$ である。$\displaystyle d=\frac{1}{12\pi}$ のとき、その極限値は
$$
\lim_{n\to\infty}n^\fbox{オ}\sigma^2 = \frac{\fbox{カ}}{\fbox{キクケ}}
$$
である。
ア〜カには、0から9までの数字が入る。
(1)の答えとして、文字列「アイウエ」を半角で1行目に入力せよ。
(2)の答えとして、文字列「オカキクケ」を半角で2行目に入力せよ。
なお、「ア」や「オ」には0や1が入ることもありうる。
また、分数はできるだけ約分された形で、根号の中身が最小となるように答えよ。
3行目以降に改行して回答すると、不正解となるので注意せよ。
$1$ 以上 $20^{24}$ 以下の整数 $N$ であって、次の条件を満たすものはいくつあるか。
条件: 何度でも微分可能な実数値関数 $f$ であって、ある実数 $x$ に対して $f(x)\ne0$ であり、さらに任意の実数 $x$ に対して $$\frac{f(x)}{N}=f\left(\frac{x-1}{2}\right)+f\left(\frac{x+1}{2}\right)$$ を満たすようなものが存在する。
条件を満たす $N$ の個数を、半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。
$\mathrm{AB=AC}$ の直角二等辺三角形 $\mathrm {ABC}$ がある。点 $\mathrm D$ を、直線 $\mathrm{AD}$ と $\mathrm{BC}$ が平行となるように取ったところ、$\mathrm{BD}=10,\mathrm{CD}=7$ であった。このとき $$\mathrm{AB}^4 + \mathrm{AD}^4 =\fbox{アイウエ}$$ である。ただし $\mathrm{XY}$ で線分 $\mathrm{XY}$ の長さを表すものとする。
ア〜エには、0から9までの数字が入る。
文字列「アイウエ」を半角で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。
焼き鳥はタレに限るという垂川さんと、いやいや塩しかありえないという塩見さんは、激論の末、ゲームで決着をつけることになった。
$N,M$ をそれぞれ $1$ 以上 $2024$ 以下の整数とする。同じ大きさの焼き鳥が $N\times M$ の長方形状に並べられている。白と黒の串がたくさんある。垂川さんと塩見さんは、縦横いずれかの列または行を選んで、白または黒の串を端まで刺し通すという行動を、垂川さんから始めて交互に行う。ただし、各列または行にはそれぞれ $1$ 本の串しか刺し通すことができない。
合計 $N+M$ 本の串を刺し終わったとき、刺された串の色が縦と横で同じ焼き鳥の数を $S$、異なる焼き鳥の数を $D$ とする。$S>D$ ならば垂川さんの勝ち、$S<D$ なら塩見さんの勝ち、$S=D$ なら引き分けとする。
垂川さんの行動にかかわらず、うまく行動すれば塩見さんが必ず勝てるような組 $(N,M)$ はいくつあるか。
条件を満たす組 $(N,M)$ の数を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。
$n$ を $3$ 以上の整数とする。はじめ、黒板には $n-1$ 個の有理数 $\displaystyle \frac{1}{2}, \frac{1}{3},\ldots, \frac{1}{n} $ が書かれている。黒板から $2$ つの有理数 $x,y$ を選んで消し、新たに有理数 $\displaystyle \frac{x+y}{1+xy} $ を書くという操作を繰り返し行う。そして、最後に黒板に残った $1$ つの有理数を既約分数として表すと、分子が $899$ で割り切れた。
このようなことが起こる最小の $n$ を求めよ。
条件を満たす $n$ の最小値を半角数字で1行目に入力せよ。
2行目以降に改行して回答すると、不正解となるので注意せよ。