縦19区画、横28区画のグリッドがある
右折(↑→)と左折(→↑)両方の数の和が10である時
最短経路は何通りあるか?
非負整数で答えろ
鋭角三角形$ABC$があり$BC$の中点を$M$,垂心を$H$とすると
$AM=20,BC=16,MH=4$であったので$AH$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形$ABC$があり垂心を$H$とする.$H$に関して$A$と対称な点を$D$とすると,
$4$点$ABCD$は共円であり$BH=5,AC=20$であったので
$AB$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB<AC$の鋭角三角形$ABC$があり垂心を$H$,外心を$O$とする.
直線$AO$と$BC$の交点を$D$とすると$AB:BD=5:3,CH=27,AH=19$
が成立したので$AC$の長さの$2$乗を解答してください.
例)ひらがなで入力してください。
鋭角三角形$ABC$があり$∠A$内の傍心を$P$とすると$∠APB=23°$であったので,
$∠BAC$の大きさを度数法で表したときにあり得る最小の整数値を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
三角形$ABC$の重心を$G$とすると,$∠AGB=120°,∠AGC=150°,AB=14$
であったので$AC$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
鋭角三角形$ABC$があり垂心を$H$とすると$AH=7,BH=CH=2$であったので
$AB$の長さの$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AD<BC$の等脚台形$ABCD$があり線分$AB$上に$∠ADP=∠BCP$となる点$P$をとると
$AP=6,BP=9,AD=16$であったので
等脚台形$ABCD$の面積の$2$乗を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.
$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.
答えは正の整数値となるので,その整数値を半角で入力してください.