数学の問題一覧

カテゴリ
以上
以下

KOTAKE杯003(B)

MrKOTAKE 自動ジャッジ 難易度:
4月前

35

問題文

$AB=12,BC=14,CA=16$の三角形$ABC$があり$∠A$の内角二等分線と
$BC$の交点を$D$とする.線分$AC$上に$DB=DE$となる点$E$をとるとき,
$CE$の長さとしてあり得る値の総和を解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(K)

MrKOTAKE 自動ジャッジ 難易度:
4月前

19

問題文

$AB=AE,BC<DE$を満たす円に内接する五角形$ABCDE$がある.
$AC$と$BE$の交点を$F$,$AD$と$BE$の交点を$G$とすると
$BG=153,EF=187,FG=117$が成立した.
直線$CD$と直線$BE$の交点を$P$とするとき$BP$の長さを解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

KOTAKE杯003(C)

MrKOTAKE 自動ジャッジ 難易度:
4月前

38

問題文

正方形$ABCD$があり線分$CD$上に$∠DAP=19°$となるよう点$P$をおき,
$P$から$AC$への垂線の足を$H$とするとき$∠CBH$の大きさを度数法で解答してください.

解答形式

答えは正の整数値となるので,その整数値を半角で入力してください.

4月前

6

${}$ 西暦2025年問題第3弾です。九九表81個の数の総和を求めると2025であることが、いろいろなところで語られています。それを元にアレンジしてみました。工夫をして計算してほしいところですが、根性でもどうぞ!

解答形式

${}$ 解答は求める和をそのまま入力してください。
(例)103 → $\color{blue}{103}$

ガウス記号の処理

sha256 自動ジャッジ 難易度:
4月前

1

問題文

以下の値を求めてください。
$$
\sum_{n=1}^{90}\sum_{k=1}^{n}\Big\lfloor{\frac{46}{91}+\frac{k-1}{n}}\Big\rfloor
$$

解答形式

答えは整数値になるので、半角数字で入力してください。


${}$ 西暦2025年問題第2弾です。第1弾に引き続き虫食算で、今回は掛け算にしてみました。数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるよう仕込んでいるのは変わりません。パズル的に解くのもよし、数学的にゴリゴリ解くのもよし、どうぞお好きなようにお楽しみください!

解答形式

${}$ 解答は上2行を「被乗数×乗数」の形で入力してください。
(例) $2025 \times 102 = 206550$ → $\color{blue}{2025 \text{×} 102}$
 入力を一意に定めるための処置です。数字は半角で、「×」の演算記号はTeX記法(\times)でも、絵文字や環境依存文字でもなく、全角記号の「×」でお願いします。空白(スペース)も入れる必要はありません。


${}$ 2025年、あけましておめでとうございます。昨年は図形問題の投稿を長らくお休みしてしまいましたが、本年もよろしくお願いいたします。
 さて、新年数日は西暦である2025を織り込んだ数学やパズルの問題をお送りします。
 初日・2日目は虫食算です。虫食算というと確定マスから埋めていき、時には場合分けや仮置きを利用するのが定番の手法ですが、僕が作る虫食算は数学的手法(約数や倍数、偶奇性や剰余、不等式による絞り込み、などなど)を適宜用いることで面倒な場合分けや仮置きを軽減できるようにしています。とはいえ、解き方は自由です。お好きなようにパズルなひと時をお楽しみください。

解答形式

${}$ 解答は2行目を「被除数÷除数」の形で入力してください。
(例) $2025 \div 101 = 20$ 余り $5$ → $\color{blue}{2025 \text{÷} 101}$
 入力を一意に定めるための処置です。数字は半角で、「÷」の演算記号はTeX記法(\div)でも、絵文字や環境依存文字でもなく、全角記号の「÷」でお願いします。空白(スペース)も入れる必要はありません。

特殊な数列の問題

Shirapi- ジャッジなし 難易度:
4月前

0

初項が13, 第4項まで公差が2, 第4項以降は公差が4となる数列${a_{n}}$の一般項を求めよ。ただし, 場合分けをせずにひとつの式で表すこと。

2025記念問題

kiwiazarashi 自動ジャッジ 難易度:
4月前

21

問題文

素因数分解したときの素因数の合計が22になるものを「キウイナンバー」とします。(例えば2025は素因数分解すると3×3×3×3×5×5になり、これを合計すると22になるので2025はキウイナンバーです。)
最大のキウイナンバーを求めてください。

解答形式

答えの数字をそのまま入力すればOKです。


98x^2+190x-312を因数分解せよ。

Qualifier 4

seven_sevens 採点者ジャッジ 難易度:
4月前

10

$$\int^3_{-1}\{(x+3)-|2x|\}dx$$

Qualifier 10

seven_sevens 採点者ジャッジ 難易度:
4月前

14

$$\lim_{h\to0}\frac{1}{h}\int\{f(x+h)-f(x)\}dx$$
ただしf(x)は多項式