△ABC とその外接円 O があり、OA = 3、AB = 4 である。半直線 AO と線分 BC が交わるように点 C をとり、その交点を D とする。BD : DC = 2 : 1 となるときの OD の長さを全て求めなさい。ただし、点 C は弧 AB 上にないものとする。
答えはある整数 $a, b, c$ を用いて$$\rm{OD} = \frac{b \pm \sqrt{c}}{a}$$と表せるので、一行目に $a$、二行目に $b$、三行目に $c$ を半角で入力してください。
時刻a時b分について、100a+b.60a+bがどちらも平方数になるような時刻について、
abの総和を求めよ。
但し0時00分から23時59分までとする。
半角で解答して下さい。
△SEXの面積…1行目
ソファーの高さ…2行目
半角数字、/、√、^、()を使ってください
AB=36, AC=24の△ABCがあり線分ABを2:1に内分する点D, 線分ACを3:1に内分する点EをとりBEとCDの交点をPとするとAP=14であった.
このときBCの長さの2乗を求めよ。
例)半角で解答して下さい。
台形ABCDにおいて、∠B=∠C=90°であり、
AB=4で、2点B,Dは直線AEについて対称である。BE=3となる点EをBE上にとり、∠BEF=90°となるAD上の点をFとする。また、BDについて、AE,EFとの交点をそれぞれG,Hとする。このとき、次の問いに答えよ。
⑴△ABC∽△BCDを証明せよ。
⑵∠BAE=a°とするとき、4点A,B,E,Dを通る円において、弧ABEDの長さを求めなさい
⑶△GEHの面積を求めなさい
証明なので、⑴は厳密に
⑵,⑶は答えのみでお願いします
公立高校を意識するとしたら、15分くらいですかね
方程式x⁶−6x⁵+15x⁴−47x³+15x²−6x+1=0の実数解を求めて下さい。
正の整数a.b.cを用いて$\frac{b±√c}{a}$の形で表せられるので、a+b+cの値を半角で解答して下さい。